Егэ

Скорость тела. Средняя скорость тела

      Решение задач на движение опирается на хорошо известную из курса физики формулу

позволяющую найти путь   S ,   пройденный за время   t   телом, движущимся с постоянной скоростью   v .

      Сразу же сделаем важное

      Замечание 1. Единицы измерения величин   S ,   t   и   v   должны быть согласованными. Например, если путь измеряется в километрах, а время – в часах, то скорость должна измеряться в км/час.

      В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости, которая вычисляется по формуле

(1)

      Например, если тело в течение времени   t1   двигалось со скоростью   v1 ,  в течение времени   t2   двигалось со скоростью   v2 ,  в течение времени   t3   двигалось со скоростью   v3 ,  то средняя скорость

(2)

      Задача 1. По расписанию междугородный автобус должен проходить путь в   100   километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на   25   минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на   20   км/час. Какова скорость автобуса по расписанию?

      Решение. Обозначим буквой   v   скорость автобуса по расписанию и будем считать, что скорость   v   измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

Рис. 1

      Тогда

      – время движения автобуса по расписанию (в часах);

      – время, за которое автобус проехал первую половину пути (в часах);

      v + 20   – скорость автобуса во второй половине пути (в км/час);

      – время, за которое автобус проехал вторую половину пути (в часах).

      В условии задачи дано время остановки автобуса –   25   минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

      Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

      Решим это уравнение:

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   40   км/час.

      Задача 2. (МИОО) Первый час автомобиль ехал со скоростью   120   км/час, следующие три часа – со скоростью   105   км/час, а затем три часа – со скоростью   65   км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

      Решение. Воспользовавшись , получаем

      Ответ.   90   км/час.

      Задача 3. Первую половину пути поезд шел со скоростью   40   км/час, а вторую половину пути – со скоростью   60   км/час. Найдите среднюю скорость поезда на протяжении всего пути.

      Решение. Обозначим буквой   S   длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

Рис. 2

      Тогда

      – время, за которое поезд прошел первую половину пути, выраженное в часах;

      – время, за которое поезд прошел вторую половину пути, выраженное в часах.

      Следовательно, время, за которое поезд прошел весь путь, равно

      В соответствии с средняя скорость поезда на протяжении всего пути

      Ответ.   48   км/час.

      Замечание 2. Средняя скорость поезда в задаче 3 равна   48   км/час, а не   50   км/час, как иногда ошибочно полагают, вычисляя чисел (скоростей)   40   км/час и   60   км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по .

Движение навстречу друг другу

Если два объекта движутся навстречу друг другу, то они сближаются. Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:  

Задача 1Решение:Решение в виде выражения: 50 * (100 : 25) = 200Ответ
Задача 2

Решение:

1) 25 + 20 = 45 (сумма скоростей теплоходов)

2) 90 : 45 = 2

Решение в виде выражения:90 : (20 + 25) = 2

Ответ: Теплоходы встретятся через 2 часа.

Задача 3

От двух станций, расстояние между которыми 564 км., одновременно навстречу друг другу вышли два поезда. Скорость одного из них 63 км/час. Какова скорость второго, если поезда встретились через 4 часа?

Решение:Ответ: Задача 4Решение:Ответ: Задача 5Решение:

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: Поезда встретятся через 4 часа.

Движение по реке. Скорость течения реки

      В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

      По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела (скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела  и скорости течения реки.

      Задача 4. Моторная лодка прошла по течению реки   14   км, а затем   9   км против течения, затратив на весь путь   5   часов. Скорость лодки в стоячей воде   5   км/час. Найдите скорость течения реки.

      Решение. Обозначим буквой   v   скорость течения реки и будем считать, что скорость   v   измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

Рис. 3

      Тогда

      5 + v   – скорость, с которой лодка шла по течению реки (в км/час);

      – время движения лодки по течению реки (в часах);

      5 – v   – скорость, с которой лодка шла против течения реки (в км/час);

      – время движения лодки против течения реки (в часах);

      Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути   5   часов:

      Решим это уравнение:

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   2   км/час.

      Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки   34   км и   39   км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти   75   километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

      Решение. Обозначим   vс   (км/ч) скорость лодки в стоячей воде и обозначим   vр   (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

Рис. 4

Рис. 5

      Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

(3)

      Если ввести обозначение

то, воспользовавшись формулой

vс = xvр ,

перепишем уравнение (3) в виде

(4)

      Умножая уравнение (4) на   vр ,   получим

      По смыслу задачи первый корень должен быть отброшен.

      Ответ.   7,5 .

Шаги

Метод 1 из 2:

Часть 1: Определение средней скорости изменения функции

  1. 1

    Функция. Это соответствие между переменными величинами, в котором каждому значению некоторой независимой переменной «x» соответствует определенное значение зависимой переменной «у».

  2. 2

    Переменная. Это величина, в процессе своего изменения принимающая различные значения. Переменные, как правило, обозначаются через «х» и «у».

  3. 3

    Угловой коэффициент. Он равен тангенсу угла между положительным направлением оси абсцисс и данной прямой линией. Угловой коэффициент характеризует скорость изменения линейной функции.

  4. 4

    Секущая. Это прямая, пересекающая две или более точки, лежащих на кривой. При вычислении средней скорости изменения функции вы находите угловой коэффициент секущей между двумя заданными точками.

  5. 5

    Основная формула для вычисления средней скорости изменения функции показана на рисунке.

Метод 2 из 2:

Часть 2: Вычисление средней скорости изменения функции

  1. 1

    Найдите f(x + h).

    Вычислите f(x + h), используя следующее выражение: f(x + h) = (х + h)^2 = x^2 + 2xh + h^2.

    В исходной функции f(x) замените «х» на «x + h», где h – приращение аргумента (то есть изменение независимой переменной «х»).Например, дана функция f(х) = x^2. Вычислите среднюю скорость изменения функции между в интервале (2,5) (то есть х1 = 2 и х2 = 5).

  2. 2

    Вычислите среднюю скорость изменения, воспользовавшись основной формулой и подставив в нее исходную функцию f(x) и преобразованную функцию f(x+h).

    В приведенном выше примере вычисления показаны на рисунке.
    WH.shared.addScrollLoadItem(‘cc51182fbff452ca00cb398923769107’)

    {«smallUrl»:»https:\/\/www.wikihow.com\/images_en\/thumb\/e\/e7\/Screen-Shot-2014-03-11-at-5.00.07-PM.png\/460px-Screen-Shot-2014-03-11-at-5.00.07-PM.png»,»bigUrl»:»https:\/\/www.wikihow.com\/images\/thumb\/e\/e7\/Screen-Shot-2014-03-11-at-5.00.07-PM.png\/728px-Screen-Shot-2014-03-11-at-5.00.07-PM.png»,»smallWidth»:460,»smallHeight»:111,»bigWidth»:»728″,»bigHeight»:»176″,»licensing»:»

    «}

  3. 3

    Найдите h.

    В приведенном выше примере: h = x2 — x1 = 5 — 2 = 3.

    Для этого вычтите начальное значение переменной «х» из ее конечного значения. Другими словами, если интервал задается в виде (x1, x2), то h = x2 — x1.

  4. 4

    Вычислите среднюю скорость изменения.

    В приведенном выше примере: А(х) = 2х + h = 2 × 2 + 3 = 7

    Поставьте найденное значение h в выведенную выше формулу (вместо «х» подставьте значение x1).

  5. 5

    Запишите ответ. В нашем примере средняя скорость изменения функции равна 7.

Перемещение материальной точки

Пусть материальная точка совершает движение по оси X все время в одном направлении. Тогда перемещением этой материальной точки за отрезок времени $\Delta t=t_2-t_1$ будет отрезок $\Delta x=x_2-x_1$. Если материальная точка все время своего движения перемещалась в одном направлении, то пройденный путь ($\Delta s$) равен по модулю величине перемещения:

Если точка движется сначала в одном направлении, затем останавливается и движется в противоположном направлении, (например, так движется тело брошенное вертикально вверх) то путь равен сумме модулей перемещений в обоих направлениях:

Характеристика величины

Скорость в физике — это величина, описывающая количество пути, пройденного за единицу времени. То есть когда говорят, что скорость пешехода составляет 5 км/ч, это означает, что он проходит расстояние в 5 км за 1 час.

Единой размерности в этой формуле нет, поскольку с ее помощью описываются и крайне медленные, и очень быстрые процессы.

Например, искусственный спутник Земли преодолевает порядка 8 км за 1 секунду, а тектонические плиты, на которых расположены материки, по измерениям ученых, расходятся всего на несколько миллиметров за год. Поэтому и размерности у скорости могут быть разными — км/ч, м/с, мм/с и т.д.

Принцип заключается в том, что расстояние делится на время, необходимое для преодоления пути. Не стоит забывать о размерности, если проводятся сложные расчеты.

Чтобы не запутаться и не ошибиться в ответе, все величины приводятся в одни и те же единицы измерения. Если длина пути указана в километрах, а какая-то его часть в сантиметрах, то, пока мы не получим единства в размерности, правильного ответа нам не узнать.

Для чего это нужно?

Такие расчеты полезны всем. Мы все время планируем свой день и перемещения. Имея дачу за городом, есть смысл узнать среднюю путевую скорость при поездках туда.

Это упростит планирование проведения выходных. Научившись находить эту величину, мы сможем быть более пунктуальными, перестанем опаздывать.

Вернемся к примеру, предложенному в самом начале, когда часть пути автомобиль проехал с одной скоростью, а другую — с иной. Такой вид задач очень часто используется в школьной программе. Поэтому, когда ваш ребенок попросит вас помочь ему с решением подобного вопроса, вам будет просто это сделать.

Сложив длины участков пути, вы получите общее расстояние. Поделив же их значения на указанные в исходных данных скорости, можно определить время, потраченное на каждый из участков. Сложив их, получим время, потраченное на весь путь.

Задачи на среднюю скорость (далее СК). Мы уже рассматривали задания на прямолинейное движение. Рекомендую посмотреть статьи » » и » » . Типовые задания на среднюю скорость это группа задач на движение, они включены в ЕГЭ по математике и такая задача вполне вероятно может оказаться перед вами в момент самого экзамена. Задачки простые, решаются быстро.

Смысл таков: представьте объект передвижения, например автомобиль. Он проходит определённые участки пути с разной скоростью. На весь путь затрачивается какое-то определённое время. Так вот: средняя скорость это такая постоянная скорость с которой автомобиль преодолел бы данный весть путь за это же время То есть формула средней скорости такова:

Если участков пути было два, тогда

Если три, то соответственно:

*В знаменателе суммируем время, а в числителе расстояния пройденные за соответствующие им отрезки времени.

Первую треть трассы автомобиль ехал со скоростью 90 км/ч, вторую треть – со скоростью 60 км/ч, а последнюю – со скоростью 45 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Как уже сказано необходимо весь путь разделить на всё время движения. В условии сказано о трёх участках пути. Формула:

Обозначим весь пусть S. Тогда первую треть пути автомобиль ехал:

Вторую треть пути автомобиль ехал:

Последнюю треть пути автомобиль ехал:

Таким образом

Решите самостоятельно:

Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть – со скоростью 120 км/ч, а последнюю – со скоростью 110 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Первый час автомобиль ехал со скоростью 100 км/ч, следующие два часа – со скоростью 90 км/ч, а затем два часа – со скоростью 80 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

В условии сказано о трёх участках пути. СК будем искать по формуле:

Участки пути нам не даны, но мы можем без труда их вычислить:

Первый участок пути составил 1∙100 = 100 километров.

Второй участок пути составил 2∙90 = 180 километров.

Третий участок пути составил 2∙80 = 160 километров.

Вычисляем скорость:

Решите самостоятельно:

Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Первые 120 км автомобиль ехал со скоростью 60 км/ч, следующие 120 км — со скоростью 80 км/ч, а затем 150 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Сказано о трёх участках пути. Формула:

Протяжённость участков дана. Определим время, которое автомобиль затратил на каждый участок: на первый затрачено 120/60 часов, на второй участок 120/80 часов, на третий 150/100 часов. Вычисляем скорость:

Решите самостоятельно:

Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Путешественник переплыл море на яхте со средней скоростью 17 км/ч. Обратно он летел на спортивном самолете со скоростью 323 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.

Это интересно: Как не давать взятки сотруднику ГИБДД – несколько идей для водителя: изучаем вопрос

Как решать задачи на среднюю скорость

В ЕГЭ по матматике профильного уровня встречаются задачи на нахождение средней скорости автомобиля, путешественника, бегуна и т.п. В этой статье мы постараемся разобраться со способами решения данного типа зданий. Попробуйте решить следующие задачи:

  1. Первую треть трассы велосипедист ехал со скоростью 12 км/ч, вторую треть – со скоростью 16 км/ч, а последнюю треть – со скоростью 24 км/ч. Найдите среднюю скорость велосипедиста на протяжении всего пути. Ответ дайте в км/ч.
  2. Путешественник переплыл море на яхте со средней скоростью 20 км/ч. Обратно он летел на спортивном самолете со скоростью 480 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.
  3. Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Если у Вас возникает недопонимание, или же вы просто не знаете как решать такие задачи, то данная статья предназначена как раз для Вас!

Средняя скорость объекта

Для начала вспомним формулу, по которой решаются все задачи на движение: ​\( S=vt \)​ — пройденный путь равняется произведению скорости и времени. Так вот, средняя скорость равна отношению всего пути ко времени, которое было затрачено на прохождение этого пути. Если перевести на математический язык:

Однако, раз возникла нужда вычислить среднюю скорость, то наверняка она была разной на различных промежутках. Например, Вам необходимо прийти в школу. Сначала вы какой-то путь проезжаете на автобусе, а затем идете пешком.

Условно, весь ваш путь можно разделить на 2 промежутка, и на обоих Ваша скорость и время его прохождения будет разной.

Аналогично мы должны вычислить и общее время, которое было затрачено на прохождение всего пути. То есть ​\( t=t_1+t_2+\ldots+t_n \)​, причем время вычисляем на каждом промежутке! То есть, запишем математически формулу для нахождения времени на n-м промежутке: ​\( t_n=\dfrac{S_n}{v_n} \)​

Решение задач

А теперь, обогатившись некоторой теорией решим первую из предложенных задач:

Первую треть трассы велосипедист ехал со скоростью 12 км/ч, вторую треть – со скоростью 16 км/ч, а последнюю треть – со скоростью 24 км/ч. Найдите среднюю скорость велосипедиста на протяжении всего пути. Ответ дайте в км/ч.

Решение:

  1. По условию задачи мы видим, что автомобиль прошёл сначала одну треть, затем вторую треть и последнюю треть. Значит весь его маршрут состоит из трёх участков. Поэтому удобно обозначить длину всего его пути за ​\( 3S \)​
  2. Теперь нам необходимо выяснить за какое время автомобиль прошёл каждый из этих промежутков (воспользовавшись формулой ​\( t_n=S_n/v_n \)​). Причем длина каждого из трёх промежутков будет равна S.
    1. Время, за который был пройдена первая треть: ​\( t_1=\dfrac{S}{12} \)​.
    2. Аналогично, найдем время, за которое были пройдены вторая и третья трети всего пути: ​\( t_2=\dfrac{S}{16} \)​ и  ​\( t_3=\dfrac{S}{24} \)​
  3. Итак, мы выяснили сколько времени тратит автомобиль на прохождение каждого из отрезков своего пути, значит можем найти сколько он потратил времени всего: ​\( t=t_1+t_2+t_3 \)​. Таким образом: ​\( t=\dfrac{9S}{48} \)​

Теперь мы знаем длину всего пути (\( 3S \)​) и сколько времени автомобиль затратил на прохождение всего пути (\( t=\dfrac{9S}{48} \)​, значит найти среднюю скорость не составит и труда:

Ответ: 16

Теперь постарайтесь самостоятельно решить оставшиеся две текстовые задачи на нахождение средней скорости, а если не получается, то посмотрите видео-урок

-урок: «Как решать задачу на нахождение средней скорости»:

В данном видео-уроке я покажу, как решаются все три предложенные текстовые задачи на нахождение средней скорости. Также Вы можете сравнить своё решение с моим.

  • #6. Длина хорды
  • Как готовиться к ЕГЭ по математике самостоятельно (часть 1)

Как же рассчитать скорость?

На самом деле, рассчитать ее можно несколькими способами:

  • через формулу нахождения мощности;
  • через дифференциальные исчисления;
  • по угловым параметрам и так далее.

В этой статье рассматривается самый простой способ с самой простой формулой — нахождение значения этого параметра через расстояние и время. Кстати, в формулах дифференциального расчета также присутствуют эти показатели. Формула выглядит следующим образом:

v=S/t, где

  • v — скорость объекта,
  • S — расстояние, которое пройдено или должно быть пройдено объектом,
  • t — время, за которое пройдено или должно быть пройдено расстояние.

Как видите, в формуле первого класса средней школы нет ничего сложного. Подставив соответствующие значения вместо буквенных обозначений, можно рассчитать быстроту передвижения объекта. Например, найдем значение скорости передвижения автомобиля, если он проехал 100 км за 1 час 30 минут. Сначала требуется перевести 1 час 30 минут в часы, так как в большинстве случаев единицей измерения рассматриваемого параметра считается километр в час (км/ч). Итак, 1 час 30 минут равно 1,5 часа, потому что 30 минут есть половина или 1/2 или 0,5 часа. Сложив вместе 1 час и 0,5 часа получим 1,5 часа.

Теперь нужно подставить имеющиеся значения вместо буквенных символов:

v=100 км/1,5 ч=66,66 км/ч

Здесь v=66,66 км/ч, и это значение очень приблизительное (незнающим людям об этом лучше прочитать в специальной литературе), S=100 км, t=1,5 ч.

Таким нехитрым способом можно найти скорость через время и расстояние.

А что делать, если нужно найти среднее значение? В принципе, вычисления, показанные выше, и дают в итоге результат среднего значение искомого нами параметра. Однако можно вывести и более точное значение, если известно, что на некоторых участках по сравнению с другими скорость объекта была непостоянной. Тогда пользуются таким видом формулы:

vср=(v1+v2+v3+…+vn)/n, где v1, v2, v3, vn — значения скоростей объекта на отдельных участках пути S, n — количество этих участков, vср — средняя скорость объекта на всем протяжении всего пути.

Эту же формулу можно записать иначе, используя путь и время, за которое объект прошел этот путь:

  • vср=(S1+S2+…+Sn)/t, где vср — средняя скорость объекта на всем протяжении пути,
  • S1, S2, Sn — отдельные неравномерные участки всего пути,
  • t — общее время, за которое объект прошел все участки.

Можно записать использовать и такой вид вычислений:

  • vср=S/(t1+t2+…+tn), где S — общее пройденное расстояние,
  • t1, t2, tn — время прохождения отдельных участков расстояния S.

Но можно записать эту же формулу и в более точном варианте:

vср=S1/t1+S2/t2+…+Sn/tn, где S1/t1, S2/t2, Sn/tn — формулы вычисления скорости на каждом отдельном участке всего пути S.

Таким образом, очень легко найти искомый параметр, используя данные выше формулы. Они очень просты, и как уже было указано, используются в начальных классах. Более сложные формулы базируются на этих же формулах и на тех же принципах построения и вычисления, но имеют другой, более сложный вид, больше переменных и разных коэффициентов. Это нужно для получения наиболее точного значения показателей.

Средняя скорость

Факт изменения скорости тела при неравномерном движении не всегда необходимо учитывать, при рассмотрении движении тела на большом участке пути в целом (нам не важна скорость в каждый момент времени) удобно ввести понятие средней скорости.

Например, делегация школьников добирается из Новосибирска в Сочи поездом. Расстояние между этими городами по железной дороге составляет приблизительно 3300 км. Скорость поезда, когда он только выехал из Новосибирска составляла

Рис. 6. Иллюстрация к примеру

Когда рассматривается движение тела на большом участке пути в целом, удобнее ввести понятие средней скорости.

Средней скоростью называют отношение полного перемещения, которое совершило тело, ко времени, за которое совершено это перемещение (рис. 7).

Рис. 7. Средняя скорость

Данное определение не всегда является удобным. Например, спортсмен пробегает 400 м – ровно один круг. Перемещение спортсмена равно 0 (рис. 8), однако мы понимаем, что его средняя скорость нулю равна быть не может.

Рис. 8. Перемещение равно 0

На практике чаще всего используется понятие средней путевой скорости.

Средняя путевая скорость – это отношение полного пути, пройденного телом, ко времени, за которое путь пройден (рис. 9).

Рис. 9. Средняя путевая скорость

Существует еще одно определение средней скорости.

Средняя скорость – это та скорость, с которой должно двигаться тело равномерно, чтобы пройти данное расстояние за то же время, за которое оно его прошло, двигаясь неравномерно.

Из курса математики нам известно, что такое среднее арифметическое. Для чисел 10 и 36 оно будет равно:

Для того чтобы узнать возможность использования этой формулы для нахождения средней скорости, решим следующую задачу.

Велосипедист поднимается со скоростью 10 км/ч на склон, затрачивая на это 0,5 часа. Далее со скоростью 36 км/ч спускается вниз за 10 минут. Найдите среднюю скорость велосипедиста (рис. 10).

Рис. 10. Иллюстрация к задаче

Дано:Найти:

Так как единица измерения данных скоростей – км/ч, то и среднюю скорость найдем в км/ч. Следовательно, данные задачи не будем переводить в СИ. Переведем

Средняя скорость равна:

Полный путь (

Путь подъема на склон равен:

Путь спуска со склона равен:

Время, за которое пройден полный путь, равно:

Ответ:

Исходя из ответа задачи, видим, что применять формулу среднего арифметического для вычисления средней скорости нельзя.

Не всегда понятие средней скорости полезно для решения главной задачи механики. Возвращаясь к задаче про поезд, нельзя утверждать, что если средняя скорость на всем пути поезда равна Мгновенная скорость

Среднюю скорость, измеренную за бесконечно малый промежуток времени, называют мгновенной скоростью тела (для примера: спидометр автомобиля (рис. 11) показывает мгновенную скорость).

Рис. 11. Спидометр автомобиля показывает мгновенную скорость

Существует еще одно определение мгновенной скорости.

Мгновенная скорость – скорость движения тела в данный момент времени, скорость тела в данной точке траектории (рис. 12).

Рис. 12. Мгновенная скорость

Для того чтобы лучше понять данное определение, рассмотрим пример.

Пусть автомобиль движется прямолинейно по участку шоссе. У нас есть график зависимости проекции перемещения от времени для данного движения (рис. 13), проанализируем данный график.

Рис. 13. График зависимости проекции перемещения от времени

На графике видно, что скорость автомобиля не постоянная. Допустим, необходимо найти мгновенную скорость автомобиля через 30 секунд после начала наблюдения (в точке A). Пользуясь определением мгновенной скорости, найдем модуль средней скорости за промежуток времени от

Рис. 14. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Для того чтобы проверить правильность нахождения мгновенной скорости, найдем модуль средней скорости за промежуток времени от

Рис. 15. График зависимости проекции перемещения от времени

Рассчитываем среднюю скорость на данном участке времени:

Получили два значения мгновенной скорости автомобиля через 30 секунд после начала наблюдения. Точнее будет то значение, где интервал времени меньше, то есть

A

Мгновенная скорость – это векторная величина. Поэтому, кроме ее нахождения (нахождения ее модуля), необходимо знать, как она направлена.

Направление мгновенной скорости совпадает с направлением перемещения тела.

Если тело движется криволинейно, то мгновенная скорость направлена по касательной к траектории в данной точке (рис. 16).

Рис. 16. Направление мгновенной скорости

Знаете ли вы?

Физиологи установили

… что работа дыхательных органов человека в течение суток достигает 20 тыс. килограммометров. 1 ватт-час соответствует 367 килограммометрам. Следовательно, суточной работы легких достаточно для накаливания 10-вт электрической лампы в течение 5,5 часа.
За сутки человек выдыхает в среднем 1—2 кг углекислого газа, а в год примерно полтонны. Таким образом, все человечество выдыхает ежегодно в атмосферу Земли около миллиарда тонн углекислого газа.

Возможно ли это?

Два человека рассуждали о том, какое светило, солнце или луна, заслуживает преимущества.
Один, не колеблясь, назвал солнце, но другой глубокомысленно заметил: а я так думаю, что луне принадлежит эта честь; что за важность светить, когда солнце, днем, когда и без того светло, а ведь месяц светит ночью, когда темно

Скажи, могла бы светить луна, если бы не было солнца?

Некто утверждает, что в полдень 22 июня видел радугу на небе.
Возможно ли это?

Оказывается, радуга видна лишь тогда, когда высота солнца над горизонтом не превышает 42 градусов.
22 июня в полдень солнце стоит на небе выше, и нет возможности увидеть радугу.

Интересно, что с земли радуга выглядит обычно как часть окружности, а с самолета она может представлять собой и целую окружность!

Хотите знать больше?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector