Гост 2.782-96 ескд. обозначения условные графические. машины гидравлические и пневматические

Принцип действия

Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.

Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.

Разделы

  • Реестр
  • Эксплуатация
  • Производство
  • История
  • Самолёт
  • Испытания
  • Обучение
  • Биографии
  • Отзывы пилотов
  • Пассажиры
  • Заказчики
  • Мифы СМИ
    • «Не русский самолет»
    • «Камней наглотает»
    • «Стоит $7 млрд»
    • «Убили Ту-334»
    • «Разрушили все КБ»
    • Катастрофа в Индонезии
    • Чёрный маркетинг
    • Разборы статей
    • Полный список мифов
  • Конкуренты
  • Блогеры
  • Пресса
  • Фотографии
  • Инфографика
  • Видеотека
  • Форум
  • Полезные ссылки
  • MC-21->
  • Registry
  • English

e-190
interjet
sam-146
sky
авиа
ан-148
Аэрофлот
безопасность
брэо
Видео
Газпром
ГСС
деньги
заказчики
инцидент
история
конкуренты
мифы
Московия
отзыв
пилоты
производство
российский?
сми
сравнение
фото
цос
эксплуатация
ЮТэйр
Якутия

Разработка гидравлической схемы

Гидравлической схемой оборудования является конструкторский документ, на котором показаны в виде условных изображений или обозначений составные части оборудования и связи между ними. Графические обозначения элементов на гидросхеме должны быть расположены таким образом, чтобы линии связи были наименьшей длины, а число их изломов и взаимных пересечений было минимальным. Каждый элемент или устройство, входящее в оборудование и изображенное на схеме, должны иметь буквенно-цифровое позиционное обозначение, состоящее из буквенного обозначения и порядкового номера, проставленного после буквенного обозначения.

Гидравлические схемы оборудования и машин в зависимости от их основного назначения разделяют на следующие типы:
— структурные;
— принципиальные;
— соединительные (монтажные).

Структурная схема гидравлическая изображает все основные функциональные части оборудования (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Функциональные части на гидросхеме изображают сплошными основными линиями в виде прямоугольников или условных графических обозначений. Графическое построение схемы гидравлической должно давать наиболее наглядное представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей должно присутствовать указание направления потоков рабочей среды.

Принципиальная гидравлическая схема отображает все гидравлические элементы или устройства, необходимые для осуществления и контроля в оборудовании заданных гидравлических процессов, и все гидравлические связи между ними. Элементы и устройства на гидросхеме изображают в виде условных графических обозначений. Все элементы и устройства изображают на схемах в исходном положении: пружины в состоянии предварительного сжатия, электромагниты обесточенными и т. п. Принципиальная гидравлическая схема определяет полный состав элементов и связей между ними и дает детальное представление о принципах работы изделия. Обычно принципиальная гидравлическая схема служит основой для расчета гидропривода, разработки схем соединений, изучения принципа действия оборудования.

Соединительной (монтажной) является гидравлическая схема, показывающая соединение составных частей изделия и определяющая трубопроводы, которыми обеспечиваются эти соединения, а также места их присоединения. Элементы и устройства на схеме (после расчета и выбора стандартного гидрооборудования) изображают в виде упрощенных внешних очертаний. 

Буквенные обозначения основных элементов гидропривода на принципиальных гидравлических схемах

Наименование элемента

Буквенное обозначение

 Общее обозначение устройства

А

 Гидроаккумулятор (пневмоаккумулятор)

АК

 Аппарат теплообменный

АТ

 Гидробак

Б

 Вентиль

ВН

 Гидровытеснитель

ВТ

 Пневмоглушитель

Г

 Гидродвигатель поворотный

Д

 Делитель потока

ДП

 Гидродроссель

ДР

 Гидрозамок

ЗМ

 Гидроклапан

К

 Гидроклапан выдержки времени

КВ

 Гидроклапан давления

КД

 Гидроклапан обратный

КО

 Гидроклапан предохранительный

КП

 Гидроклапан редукционный

КР

 Компрессор

КМ

 Гидромотор

М

 Манометр

МН

 Гидродинамическая передача

МП

 Маслораспылитель

МР

 Масленка

МС

 Гидродинамическая муфта

МФ

 Насос

Н

 Насос аксиально-поршневой

НА

 Насос-мотор

НМ

 Насос пластинчатый

НП

 Насос радиально-поршневой

HP

 Пневмогидропреобразователь

ПГ

 Гидропреобразователь

ПР

 Гидрораспределитель

Р

 Реле давления

РД

 Гидроаппарат золотниковый

РЗ

 Гидроаппарат клапанный

РК

 Регулятор потока

РП

 Ресивер

PC

 Сепаратор

С

 Сумматор потока

СП

 Термометр

Т

 Гидродинамический трансформатор

ТР

 Устройство воздухоспускное

УВ

 Гидроусилитель

УС

 Фильтр

Ф

 Гидроцилиндр

Ц

Возможные неисправности

Исправная работа системы обеспечивается использованием подходящих деталей и расходников, а так же своевременным техническим обслуживанием. Техобслуживание сводится к регулярной замене масла, а также проверке состояния деталей, накладок и маслопроводов.

Замена масла производится раз в сезон или после каждых 2000 моточасов работы. Предварительно заводят двигатель, пока масло не прогреется до 30° С. Затем отключают мотор и сливают отработанное масло через сливное отверстие в днище картера. Масляный фильтр гидравлики снимают и промывают в дизельном топливе. Промытый фильтр ставят на место и заливают свежее масло до отметки «П». Рекомендуемая марка масла в гидравлику МТЗ 82 — М-8Г2К, М-10Г2К, М-10Г2. На заключительном этапе заводят мотор и несколько раз опускают и поднимают механизма задней навески, чтобы прокачать гидросистему.

Памятка по проведению ТО:

  • каждые 10 моточасов — проверить уровень масла в баке и убедиться в отсутствии подтекания в уплотнениях и соединениях системы;
  • каждые 60 м/ч — очистить ротор масляного фильтра;
  • каждые 240 м/ч — заменить масло в ГУРе;
  • каждые 960 м/ч — очистить и промыть сливные фильтры;
  • каждые 2000 м/ч — заменить масло в ГУРе и промыть фильтры.

Одновременно выполняется регулировка включения шестерни привода, механизма блокировки рычагов управления ГСВ, распределителя, систем силового позиционного регулирования.

Наиболее распространенные неисправности:

  • износ рычагов и шлангов;
  • неверная регулировка;
  • проблемы с тягой;
  • утечка масла.

Способы устранения

Проблема: не поднимаются и не опускаются навесные рабочие органы.

Причина: нехватка масла в баке. Долить до отметки.

Проблема: повышенный нагрев масла.

Причина: неправильная регулировка сектора управления регулятором. Его необходимо отрегулировать.

Проблема: слишком медленный подъем навесного оборудования.

Причина: возможно, поврежден насос на гидравлику, что вызвало утечку масла. Поврежденный насос необходимо заменить.

Проблема: буксование колес при включении ГСВ.

Причина: нарушение длины тяги рычага, управляющего основным цилиндром. Необходимо отрегулировать длину тяги.

Знание этих основных неисправностей поможет разобраться, если не работает гидравлика на МТЗ 82, в чем причина и что делать. Большинство неполадок могут быть устранены своими руками, а для всех остальных есть форумы и профессиональная помощь.

Компоненты гидравлической системы

Основные компоненты

Гидравлическая система состоит из многих частей. Основными деталями являются насос и привод. Насос подаёт масло, преобразуя механическую энергию в энергию давления и кинетическую энергию. Привод является частью системы, которая преобразует гидравлическую энергию обратно в механическую энергию для выполнения работы. Другие детали, кроме насоса и привода, необходимы для полной работы гидравлической системы.

Бак: хранение масла

Клапаны: контроль за направлением и величиной потока или ограничение давления

Линии трубопровода: соединение деталей системы

Давайте посмотрим на две простые гидравлические системы. 

Пример 1, гидравлический домкрат

Что вы видите на рисунке, называется гидравлический домкрат. Когда вы прилагаете усилие к рычагу, ручной насос подаёт масло в цилиндр. Давление этого масла давит на поршень и поднимает груз. Гидравлический домкрат во многом напоминает гидравлический рычаг Паскаля. Здесь добавлен гидравлический бак. Обратный клапан установлен, чтобы держать масло в баке и цилиндре между ходом поршня.

На верхнем рисунке, давление удерживается, обратный клапан закрыт. Когда ручка насоса тянется вверх, впускной обратный клапан открывается и масло попадает из бака в камеру насоса.

Дальше ручка насоса двигается вниз. Давление масла закрывает впускной обратный клапан, но открывает выпускной обратный клапан. При этом, масло поступает в цилиндр и давит на поршень снизу вверх.

Нижний рисунок показывает открытый запорный клапан для соединения бака и цилиндра, позволяя маслу перетекать в бак, при этом поршень движется вниз.

Пример 2, работа гидравлического цилиндра

1. Во первых, имеется гидравлический бак, заполненный маслом и подсоединённый к насосу.

2. Далее, насос необходим для создания потока, но насос не всасывает масло из бака. Масло попадает в насос под действием силы тяжести.

3. Насос работает и качает масло

Важно понять, что насос перемещает только объём. Объём устанавливает скорость гидравлического действия

Давление создаётся нагрузкой и не создаётся насосом.

4. Шланг от насоса соединён с распределительным клапаном. Масло поступает из насоса к клапану. Работа данного клапана заключается в направлении потока или к цилиндру, или в бак.

5. Следующим шагом является цилиндр, который выполняет фактическую работу. Два шланга от распределительного клапана соединены с цилиндром.

6. Масло из насоса направляется в нижнюю полость поршня через распределительный клапан. Нагрузка вызывает сопротивление потоку, которое в свою очередь создаёт давление.

7. Система выглядит законченной, но это не так. Ещё необходима очень важная деталь. Мы должны знать, как защитить все компоненты от повреждения в случае внезапной перегрузки или другого происшествия. Насос продолжает работать и подавать масло в систему, даже если с системой произошло происшествие. Если насос подаёт масло и нет возможности для выхода масла, давление возрастает до тех пор, пока какая либо деталь не сломается. Мы устанавливаем предохранительный клапан, чтобы предотвратить это. Обычно он закрыт, но когда давление достигает установленной величины, предохранительный клапан открывается и масло течёт в бак.

8. Бак, насос, распределительный клапан, цилиндр, шланги соединения и предохранительный клапан являются основой гидравлической системы. Все эти детали необходимы.

Различия в конструкциях

Конструкция предохранительных клапанов может быть различной. Различают изделия с одним седлом или двумя, расположенными рядом друг с другом.

По высоте подъема предохранительные клапаны подразделяются на:

  • Малоподъемные, у которых высота подъема составляет примерно 0,05 диаметра седла. Из-за свойственной им минимальной пропускной способности они не используются на промышленных трубопроводах с большим давлением. Они обладают пропорциональным механизмом срабатывания.
  • Полноподъемные, с высотой подъема равной или превышающей диаметра седла. Они работают на двухпозиционном механизме, отличаются повышенной пропускной способностью и сложной конструкцией.

Изделия с полнопроходной конструкцией позволяют оперативно сбросить внушительный объем рабочей среды, из-за чего они используются в особо ответственных комплексах.

Пружинные клапаны

Клапаны пружинного типа применяются в бытовых трубопроводных системах водо-, газоснабжения и отопления. Для прижатия золотника к седлу применяется пружина, регулируемая винтом. Он позволяет настроить предельные значения давления, после достижения которых происходит открытие клапана.

Некоторые модели пружинных клапанов имеют систему принудительного ручного открытия для проверки работоспособности изделия. Но, изделия, предназначенные для работы в опасных условиях среды, не могут оснащаться ручной продувкой.

Эти клапаны применяются в различных условиях среды. Пружины и седла, контактирующие с агрессивными жидкостями и газами, покрываются специальными антикоррозионными составами. Герметичность штока обеспечивается двойным сальниковым уплотнением из фторопласта или резины.

Рычажно-грузовые клапаны

Устройства с подобной конструкцией используют для противодействия силе напору земное притяжение. Вес груза через рычаг переходит к золотнику, уравновешивая его, пока значение давления не опустится до допустимого.

Предохранительный клапан рычажно-грузового типа

Они устанавливаются в определенном положении относительно горизонта (указывается в сопроводительной документации завода-производителя). Не могут применяться на передвижных объектах. Габариты изделия зависят от давления в системе — чем оно выше, тем больше рычаги. Чтобы избежать возникновение вибраций, используются двухседельные предохранительные клапаны небольших габаритов. Для регулировки таких устройств применяются специальные груза на рычаге.

Магнито-пружинные клапаны

Устройства магнитно-пружинного типа обладают обратным действием и приводятся в действие соленоидом. При нормальном давлении в системе электромагнит/мощная пружина прижимает запорный орган к седлу, а при избыточных показателях напора напряжение на катушке автоматически отключается. Это приводит к отжатию золотника и открытию затвора.

Существует исполнение клапана с соленоидом, прижимающим и отжимающим золотник под действием давления с противоположным направлением. При отключении питания оборудование будет работать, как пружинный тип.

Основное преимущество таких устройств — отсутствие необходимости в физическом доступе к системе для задания порогового значения давления. Оно регулируется в параметрах управляющей программы.

Магнитно-пружинные клапаны отличаются надежностью, удобством эксплуатации и возможностью применения в сложных промышленных установках.

Схема и принцип действия предохранительного клапана

Регулирование гидроцилиндров экскаватора

Регулирование гидроцилиндров надо проводить каждый раз, когда оператор меняет рабочее навесное оборудование, которое представлено такими видами:

  • рычажно-шарнирное;
  • телескопическое.

Чтобы удерживать рычажно-шарнирное устройство, применяют гидравлические цилиндры, позволяющие менять угол наклона стрелы, передвигать ковш. Телескопическое оборудование работает по принципу выдвижения или втягивания стрелы.

На машинах рычажно-шарнирного типа применяются ковши обратной и прямой лопаты, грейферный захват, погрузчик, на который можно поставить ковш требуемой емкости.

Среди особенностей рычажно-шарнирного оборудования отмечают:

  • Объем ковша 0,5-4 м³, что помогает проводить земляные работы разного уровня сложности.
  • Отлично помогают при монтаже, планировании или погрузке.
  • Созданы на основе специальных конструктивных схем, обладающих унифицированными агрегатами и узлами.
  • Передвигаются на гусеничном ходу или же пневмоколесах.
  • На поворотной платформе находится силовая установка, гидропривод, кабина водителя и навесное оборудование.
  • Навесное оборудование запускается при помощи силовых гидроцилиндров, поворот платформы и движение агрегата выполняется под управлением гидромоторов.

Давление в гидросистеме трактора

Во время циркуляционного процесса масляной жидкости между трактором и агрегатом выполняется обязательное условие: чем легче возврат, тем лучше. Аспект актуален для запуска гидравлического компрессора пневматической сеялки. Операционная обратная линия — базовый аспект.

Шланги обрата и соединения между ними имеют поперечное сечение определенного размера. Узкие места в трубопроводе или узкие стоки вызывают нагрев. Это увеличивает расход дизельного топлива и часто приводит к поломкам. Давление скорости в обратной линии нагружает гидравлические двигатели. Если к роликовым уплотнениям приложить противодавление, двигатели со временем утратят герметичность. Между производителями давление варьируется в диапазоне 1–5 бар.

Обозначение швов по характеру выполнения

По типу они делятся на:

  1. Угловые
  2. Тавровые
  3. Нахлесточные (внахлестку )
  4. Стыковые швы

Немного более подробнее все эти виды можно изучить, посмотрев таблицу:

По расположению

  • Односторонние (SS) если предстоит сваривание деталей только с одной стороны
  • Двусторонние (BS) для того, чтобы сделать именно такой тип соединения, необходимо перемещать сварочный аппарат поочередно с верхней части рабочей поверхности к внутренней. При этом внутри сечения будет находиться корень стыкового шва.

По способу выполнения (протяженности сварки)

  • точечными;
  • сплошными;
  • прерывистыми (предусматривается определенный и постоянный интервал между касанием сварки

Обозначение прерывистого (не сплошного) сварного шва на чертеже — это сплошная линия (если это видимые стыки) а если они не видимы, то линия будет штриховая.

Данный вид шва в свою очередь делится на три подвида: точечный, цепной и шахматный

По форме разделки кромок

  1. Без разделки Для того чтобы сварка методом плавления производилась на оптимальной глубине и максимально качественно, для этого необходимо разделить кромки. Это возможно сделать несколькими способами:
  2. Односторонняя разделка
  3. 2х сторонняя разделка

Зачем нужна гидравлическая схема?

Гидравлическая схема состоит из простых графических символов компонентов, органов управления и соединений. Рисование деталей стало более удобное, а символы универсальнее. Поэтому, при обучении каждый может понять обозначения системы. Гидравлическая схема обычно предпочтительна для объяснения устройства и поиска неисправностей.

Два рисунка показывают, что верхний является гидравлической схемой нижнего рисунка. Сравнивая два рисунка, заметьте, что гидравлическая схема не показывает особенности конструкции или взаимное расположение компонентов цепи. Назначение гидравлической схемы — показать назначение компонентов, места соединений и линии потоков.

Символы насоса

Основной символ насоса — это круг с чёрным треугольником, направленным от центра наружу. Напорная линия выходит из вершины треугольника, линия всасывания расположена напротив.

Таким образом, треугольник показывает направление потока.

Этот символ показывает насос постоянной производительности.

Насос переменной производительности обозначается на рисунке со стрелкой, проходящей через круг под углом 15°

Символы привода

Символ мотора

Символом мотора является круг с чёрными треугольниками, но вершина треугольника направлена к центру круга, чтобы показать, что мотор получает энергию давления.

Два треугольника используются для обозначения мотора с изменяемым потоком.

Мотор переменной производительности с изменением направления потока обозначается со стрелкой, проходящей через круг под углом 45°

Символы цилиндра

Символ цилиндра представляет прямоугольник, обозначающий корпус цилиндра (цилиндр) с линейным обозначением поршня и штока. Символ обозначает положение штока цилиндра в определённом положении.

Цилиндр двойного действия

Этот символ имеет закрытый цилиндр и имеет две подходящие линии, обозначенные на рисунке линиями.

Цилиндр однократного действия

К цилиндрам однократного действия подводится только одна линия, обозначенная на рисунке линией, противоположная сторона рисунка открыта.

Направление потока

Направление потока к и от привода (мотор с изменением направления потока или цилиндр двойного действия) изображается в зависимости от того, к какой линии подходит привод. Для обозначения потока используется стрелка.

Символы клапана — 1

1) Распределительный клапан

Основной символ распределительного клапана — это квадрат с выходными отверстиями и стрелкой внутри для обозначения направления потока. Обычно, распределительный клапан управляется за счёт баланса давления и пружины, поэтому на схеме мы указываем пружину с одной стороны и пилотную линию с другой стороны.

Обычно закрытый клапан

Обычно закрытый клапан, такой как предохранительный, обозначен стрелкой противовеса от отверстий напрямую к линии пилотного давления. Это показывает, что пружина удерживает клапан в закрытом состоянии до того, как давление не преодолеет сопротивление пружины. Мы мысленно проводим стрелку, соединяя поток от впускного к выпускному отверстию, когда давление возрастает до величины преодоления натяжения пружины.

Предохранительный клапан

На рисунке представлен предохранительный клапан с символом обычно закрытый, соединённый между напорной линией и баком. Когда давление в системе превышает натяжение пружины, масло уходит в бак.

Примечание:

Символ не указывает или это простой или это сложный предохранительный клапан

Это важно для указания их функций в цепи.. Рабочий процесс:

Рабочий процесс:

(а) Клапан всегда остаётся закрыт

(b) Когда давление появляется в главном контуре, тоже самое давление действует на клапан через пилотную линию и когда это давление преодолевает сопротивление пружины, клапан открывается и масло уходит в бак, тем самым снижая давление в главном контуре.

Обычно открытый клапан

Когда стрелка соединяет впускной и выпускной порты, значит клапан обычно открыт
. Клапан закрывается, когда давление преодолевает сопротивление пружины.

Клапан уменьшения давления обычно открыт и обозначается, как показано на рисунке ниже. Выпускное давление показано напротив пружины, чтобы устанавливать или прерывать поток, когда будет достигнута величина для сжатия пружины.

Рабочий процесс:

(а) Масло течёт от насоса в главный контур и А

(b) Когда выпускное давление клапана становится выше установленного давления, поток масла от насоса остановлен и давление в контуре А сохраняется. На него не действует давление главного контура.

(с) Когда давления в контуре А падает, клапан возвращается в состояние (а). Поэтому, давление в контуре А сохраняется, потому что охраняются условия (а) и (b)

Устройство и принцип работы гидропривода

Структурно гидропривод состоит из насоса (-ов), контрольно-регулирующей и распределительной аппаратуры, гидродвигателя (-лей), рабочей жидкости, емкости (бака) для ее содержания и средств (фильтров и охладителей), сохраняющих ее качества, а также соединительной и герметизирующей арматуры.

На рис. 2.1. изображена схема изучаемого объемного гидропривода состоящего из насоса 1, предохранительного клапана 2, распределителей 3 и 4, гидравлических двигателей – гидромотора 5 и гидроцилиндра 6, замедлительного устройства 7 опускания груза 8, бака и установленного в сливную гидролинию фильтра 9 сблокированного клапаном 10.

Рис. 2.1 Схема изучаемого гидропривода.

Насос 1 предназначен для преобразования механического энергетического потока, поступающего от первичного энергетического источника 11 (электрического или топливного двигателя) в гидравлический энергетический поток, т.е. в поток рабочей жидкости под давлением, который в зависимости от положений (позиций) затворов распределителей 3, 4 может направляться непосредственно (холостой режим) или через один или оба вместе гидравлические двигатели 5, 6 (рабочий режим) в бак. При этом величина давления на выходе из насоса зависит от совокупности сопротивлений, встречаемых потоком рабочей жидкости на пути от насоса до бака. В тех случаях, когда распределители 3, 4 находятся в позициях «А» (см. рис. 2.1), поток рабочей жидкости от насоса 1 проходит в бак через упомянутые распределители, гидролинии и фильтр 9 (холостой режим). Величина давления на выходе из насоса составляет:

,

где – величины давлений необходимых для преодоления потоком рабочей жидкости сопротивлений, соответственно, участков гиролиний, распределителей и фильтра.

В тех случаях, когда по команде извне один или оба распределители 3, 4 переводятся в любое положение «Б» или «В», в работу включается (-ются), соответственно, один или оба гидродвигатели. Направление движения гидродвигателей зависит от положения «Б» и «В» их распределителей. Когда в работу включен только один гидродвигатель, например гидромотор 5, рабочее давление на выходе из насоса составит:

,

где – потери давления на преодоление сопротивления распределителя 3, 4

– потери давления на привод гидромотора 5, зависящие от преодолеваемой нагрузки на его валу.

В том случае, когда в работу одновременно включены гидромотор 5 и гидроцилиндр 6, то их совместная работа возможна только при одинаковых потребных давлениях. Если у одного из них потребное давление ниже, чем у другого, то их совместная работа невозможна, так как поток жидкости в основном будет уходить в сторону меньшего сопротивления и нарушать нормальную работу гидропривода в целом.

Если в гидроприводе потребное давление превышает допустимое, срабатывает предохранительный клапан 2 и отводит через себя поток рабочей жидкости от насоса 1 в бак (режим перегрузки), обеспечивающий этим ограничение давления в гидроприводе и защиту его элементов от разрушения.

Для обеспечения плавности опускаемых грузов (рабочих органов) в гидроприводах используются замедлительные устройства (см. рис. 2.1, поз 7), обычно состоящие из обратного клапана и дросселя. При подъеме груза (рабочего органа) рабочая жидкость в цилиндр поступает через обратный клапан и дроссель. При опускании груза жидкость из полости цилиндра уходит в бак только через дроссель, который оказывает ей сопротивление, величина которого зависит от величины ее потока и этим обеспечивает плавность его опускания. При этом противоположная полость гидроцилиндра заполняется жидкостью подаваемой насосом. В случае избыточного количества подаваемой насосом жидкости ее часть будет отводиться на слив через предохранительный клапан 2.

Для визуального контроля давления в гидроприводе предназначен манометр 12. Для обеспечения очистки рабочей жидкости от твердых загрязнителей (абразивов, продуктов изнашивания), в гидроприводах используют различного конструктивного исполнения фильтры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector