Форкамера что это такое

Содержание:

Востребованность форкамер

Форкамера дает возможность контролировать воздушные массы, она устанавливается непосредственно перед системой очистки. Например, форкамера в электровозе – это небольшое помещение, через которое фильтруется воздух и позже по системе вентиляции попадает в вагоны, где им пользуется кондиционеры. Иными словами, благодаря этому в систему попадает предварительно отфильтрованный воздух.

В помещении предусмотрена возможность разделения воздушных масс на каналы. Если нужно, чтобы воздух был теплым, там ставят термостат, который позволяет регулировать температуру воздушных потоков и контролировать ее. В зимнее время системы вентиляции в поездах и больших помещениях используют как систему отопления. Радиатор в данном случае будет не нужен: в каналах для воздушных потоков устанавливают специальные решетки, и этого достаточно для полного контроля над помещениями.


При необходимости воздух в форкамере можно подвергнуть технической обработке, например, санитарной. Приспособление применяется для вентиляционных систем закрытого и полузакрытого типа при учете их большой площади. Закладка такого помещения происходит при строительстве здания, однако если его нет, форкамеру можно достроить или превратить в нее пустующую комнату.

Мнение эксперта

Никоноров Владимир Алексеевич

Наш эксперт. Специалист в области кондиционирования и вентиляции с 10-летним стажем.

Задать вопрос

Если форкамера нужна в частном доме, разрешение не требуется, но для многоквартирного придется его получить. В любом случае, чтобы устройство могло работать правильно, требуется грамотно составленный проект, в противном случае от него будет мало пользы. Кроме этого, должна быть грамотно рассчитана вентиляция с учетом особенностей климата, площади помещения и иных нюансов.

Отличная статья 0

  • Еще больше интересного:

Форкамерный двигатель газ 3102 характеристики

Самый первый двигатель ЗМЗ 4022.10 ( 1981 г.-1992 г. )

Толчком к созданию двигателя с форкамерно-факельным зажиганием на «ГАЗе» послужил серийный выпуск в 1972 году таких моторов японской фирмой Honda, которая смогла обойти приоритетность отечественного патента. Советский двигатель получил обозначение ГАЗ-4022.10. От своего предшественника ГАЗ-24Д он отличается новой головкой блока цилиндров с иными газовыми каналами, дополнительными маленькими впускными клапанами для форкамер, системой впуска воздуха, настроенным выпуском, увеличенным ходом клапанов, модернизированным распредвалом.

Кроме того, были разработаны карбюратор К-156 оригинальной конструкции, распределитель зажигания, новая система охлаждения двигателя (как у двигателя ВАЗ-2101), а водяной насос внедрили в блок цилиндров. Впервые на этих моторах ГАЗ был применен воздушный фильтр с бумажным фильтрующим элементом. Затем документацию по изготовлению двигателей ГАЗ-4022.10 передали Заволжскому моторному заводу, который с 1981 года начал их серийное производство, но уже под новым названием – ЗМЗ-4022.10. Наибольшее количество этих моторов было выпущено в 1986 году – 4000 шт. Всего за 11 лет произведено около 27 тыс. автомобилей ГАЗ-3102 с двигателями ЗМЗ-4022.10.

В головке цилиндров находятся основные камеры сгорания 16 и рядом с ними форкамеры 14. Каждая форкамера соединяется с основной камерой сгорания двумя отверстиями (соплами) диаметром по 3,5 мм. Объем форкамеры небольшой (3,8 см3), и в нее ввернута свеча зажигания 13. Во время вращения распределительного вала 19 кулачок набегает на толкатель 18 и перемещает его вверх вместе со штангой 17. Она поворачивает общее коромысло 9, имеющее боек 8, расположенный над торцом стержня впускного клапана 7 и дополнительное плечо с регулировочным винтом 10. При повороте коромысла открывается дополнительный клапан 12 форкамеры и затем (почти одновременно) впускной клапан 7 основной камеры сгорания. Горючая смесь поступает в форкамеру из форкамерной секции 4 карбюратора 5 по отдельному каналу 3 питания, выполненному во впускном трубопроводе и в головке цилиндров. При открытом дополнительном клапане 12 в форкамеру поступает обогащенная (IX = 0,85 -;- 0,90) горючая смесь, а в основную камеру и цилиндр двигателя (при открытом впускном клапане при движении поршня 2 вниз очень бедная (IX = 1,8) горючая смесь. В конце такта сжатия между электродами свечи зажигания 13 проскакивает электрическая искра, и рабочая смесь в форкамера воспламеняется. Из форкамеры продукты сгорания смеси выбрасываются через два сопла в основную камеру сгорания в виде двух горящих факелов. Они завихряют и воспламеняют бедную рабочую смесь. Этим достигается быстрое, надежное и полное сгорание рабочей смеси в основной камере сгорания. Форкамерно-факельный способ зажигания рабочей смеси обеспечивает высокие скорости сгорания и эффективное сжигание бедных смесей при работе двигателя на обычных эксплуатационных режимах. Это значительно улучшает экономичность двигателя. Применение бедных горючих смесей исключает недогорание топлива, что существенно снижает токсичность отработавших газов. Только для получения максимальной мощности двигателя, когда дроссельные заслонки карбюратора открыты почти полностью, состав смеси обогащается. Применение форкамерно-факельного зажигания рабочей смеси в двигателе повлекло за собой и некоторые изменения в карбюраторе. На двигателе установлен карбюратор K-156 с падающим потоком горючей смеси, имеющий две основные и одну дополнительную для форкамерной системы камеры. Открытие дроссельных заслонок основных камер происходит последовательно, как и в карбюраторе K-126r, устанавливаемого на двигателе автомобиля ГАЗ-24 «Волга». Открытие дроссельной заслонки форкамерной секции карбюратора происходит вследствие кинематической связи с дроссельной заслонкой первичной камеры карбюратора.

Технические характеристики :

Модель — ЗМЗ-4022.10 Тип — карбюраторный , четырехцилиндровый , с форкамерно — факельным зажиганием Диаметр цилиндра и ход поршня — 92*92 Рабочий объем цилиндров , л — 2,445 Степень сжатия — 8,0 Максимальная мощность , л.с. — 105 Максимальный крутящий момент при 2500-3000 об/мин , кгс*м — 18,5 Сорт бензина — АИ-93 Масса незаправленного двигателя со сцеплением и коробкой передач , кг — 210

Однако последующая эксплуатация автомобилей ГАЗ-3102 с двигателями ЗМЗ-4022.10 не подтвердила их значительной топливной экономичности. Сложность конструкции и необходимость финансовых затрат на доводку моторов обусловили прекращение их выпуска в 1992 году. На смену этим двигателям пришли модели ЗМЗ-402.10 и ЗМЗ-406.10.

Системы впрыска дизельных двигателей с рядным и распределительным ТНВД, особенности устройства систем впрыска топлива UIS, UPS и Common Rail, схемы систем.

Существуют следующие системы впрыска топлива для дизельного двигателя:

— Система с рядным ТНВД — Система с распределительным ТНВД. — Системы с индивидуальными ТНВД. — Система Common Rail.

Система впрыска топлива с рядным ТНВД.

Конструкция этого типа имеет плунжерные пары по числу цилиндров. Во время работы плунжер смещается в направлении подачи, приводимым от двигателя кулачковым валом. Возвратная пружина приводит плунжер в исходное положение. Отдельные секции ТНВД расположены в ряд — отсюда и название «рядный».

Избыточное давление созданное внутри плунжерной пары открывает механическую форсунку и происходит впрыск топлива в камеру сгорания. Величина активного хода плунжера изменяется его поворотом вокруг собственной оси с помощью рейки ТНВД. Это позволяет регулировать величину цикловой подачи топлива. Рейка управляется механическим центробежным регулятором, а в более продвинутых системах — электроприводом.

Схема системы впрыска топлива с рядным ТНВД.

Разновидностью ТНВД этого типа являются рядные ТНВД с дополнительными втулками. Изменяя ее положение с помощью исполнительного механизма, регулируют момент начала впрыска, независимо от частоты вращения коленвала.

Схема системы впрыска топлива с рядным ТНВД с дополнительной втулкой.

Система впрыска топлива с распределительным ТНВД.

Насос в такой системе впрыска имеет единый нагнетательный элемент для всех цилиндров. Топливоподкачивающий насос нагнетает топливо в камеру высокого давления. Высокое давление создается с помощью аксиального плунжера или нескольких радиальных плунжеров. Вращающийся центральный плунжер-распределитель направляет топливо через распределительный паз к форсункам.

В аксиальном ТНВД величину цикловой подачи определяет положение регулирующей втулки. Момент начала впрыска устанавливается поворотом роликового кольца на необходимый угол. В радиальном ТНВД регулировка момента начала впрыска устанавливается поворотом кулачковой шайбы на необходимый угол. Кроме того, эта регулировка и управление величиной цикловой подачи топлива осуществляется электромагнитным клапаном.

Схема системы впрыска топлива с распределительным радиальным ТНВД.

Система впрыска топлива с индивидуальными ТНВД.

Особенностью этой системы является отсутствие (или минимальная длина в системе UPS (Unit Pump System)) магистрали высокого давления. Это позволяет достигать давления впрыска до 2050 бар и улучшить протекание процесса впрыска. Имеются две конструкции, построенные по этой системе:

Система впрыска UIS (Unit Injector System).

В ней насос и форсунка объединены в один агрегат. Привод насос-форсунки осуществляется от кулачка распредвала. Регулировка параметров впрыска происходит с помощью электромагнитного клапана высокого давления.

Система впрыска UPS (Unit Pump System).

Принципиально она не отличается от системы UIS, только насос и форсунка не объединены в один агрегат, их соединяет короткая магистраль. Такая конструкция облегчает монтаж системы на двигатель и, соответственно, упрощает обслуживание и ремонт системы.

Система впрыска топлива Common Rail.

Особенностью конструкции этой системы впрыска является разделение функций создания высокого давления и регулирования впрыска. Давление впрыска создается и регулируется в автономном ТНВД независимо от частоты вращения двигателя и величины цикловой подачи топлива.

Оно сохраняется в аккумуляторе давления. Каждый цилиндр имеет электромагнитную форсунку впрыска с клапаном высокого давления. Регулирование впрыска осуществляется электронным блоком управления.

Последняя модель. «Гамма»

Последней разновидностью данного двигателя стала «Гамма» Стирлинга. Этот тип отличался не только наличием поршня, а также вытеснителя, а еще и тем, что в его конструкцию входили уже два цилиндра. Как и в первом случае один из них был холодным и использовался он для отбора мощности. А вот второй цилиндр, как в предыдущем случае, был холодным с одного конца и горячим с другого. Здесь же перемещался вытеснитель. В поршневом двигателе внешнего сгорания также имелся регенератор, который мог быть двух типов. В первом случае он был внешним и соединял между собой такие конструктивные части, как горячую зону цилиндра с холодной, а также с первым цилиндром. Второй тип – это внутренний регенератор. Если использовался этот вариант, то он входил в конструкцию вытеснителя.

Использование Стирлингов обосновано в том случае, если необходим простой и небольшой преобразователь тепловой энергии. Также его можно использовать в том случае, если разница температур недостаточно велика, чтобы использовать газовые или же паровые турбины. Стоит отметить, что на сегодняшний день такие образцы стали использоваться чаще. К примеру, используются автономные модели для туристов, которые способны работать от газовой конфорки.

Система форкамерно-факельного зажигания

Основными элементами, составляющими дизельный двигатель с форкамерой, являются:

Примечание: мы будем проходить путь вместе с топливом для того, чтобы полностью понять принцип работы форкамерного двигателя.

  1. Канал ведёт солярку в предкамеру.
  2. Затем проходит секция, предназначенная для переобогащённой смеси.
  3. Клапан самой форкамеры.
  4. Свеча зажигания выполняет свою основную роль (поджог топлива, когда форсунки его впрыскивают).
  5. Одновременно с тем, как от искры загорелось горючее, распредел ГРМ впускает в главную камеру топливо, посредством того, что открывает клапан.
  6. Теперь горючее на финишной прямой – в центральной камере ДВС.

Сейчас, мы надеемся, вам стало ясно, как работает форкамерный дизель и из чего состоит устройство форкамеры.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется. Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на «горячие», «холодные», «средние» — в зависимости от тепловой характеристики свечи, выражаемой её калильным числом.

Калильное число свечи зажигания определяется на специальной тарировочной установке, имеющей вид эталонного одноцилиндрового двигателя определённой конструкции. В этот двигатель устанавливают соответствующую свечу зажигания и испытывают его в различных режимах, отслеживая при этом характер работы, а также температуру и давление в цилиндре.

Каждому режиму работы двигателя соответствует определённое значение температуры теплового конуса изолятора свечи. Когда эта температура поднимается выше 850…900°С, в двигателе начинает происходить так называемое калильное зажигание — самопроизвольное, без искры, воспламенение рабочей смеси при контакте с раскалённым тепловым конусом изолятора и другими частями свечи. Данный процесс обычно проявляется при работе двигателя на больших оборотах под нагрузкой. Он может приводить к оплавлению поршня и камеры сгорания, прогоранию поршней и выпускных клапанов, а также повреждению иных элементов двигателя. Для его предотвращения в двигатель устанавливаются свечи зажигания с «холодной» тепловой характеристикой, что обеспечивается хорошим отводом тепла от теплового конуса изолятора свечи. У таких свечей тепловой конус короткий и изолятор почти на всей своей длине контактирует с металлом корпуса свечи, благодаря чему тепло от него хорошо отводится и его перегрева не происходит даже в форсированных моторах с напряжённым тепловым режимом.

С другой стороны, однако, нельзя допускать и слишком малой рабочей температуры теплового конуса свечи, поскольку при её снижении ниже 400…500°С на конусе начинается накопление отложений, вследствие чего происходит поверхностная утечка тока высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора, или вообще делает его невозможным. Поэтому в менее форсированных двигателях применяются «горячие» свечи, у которых тепловой конус изолятора имеет большую длину и теплоотвод от него затруднён, благодаря чему даже при невысокой тепловой напряжённости камеры сгорания происходит нагрев свечей и их выход на рабочую температуру, обеспечивающую самоочищение от продуктов сгорания топливной смеси — нагара, сажи и т. п.

Изоляторы свечей, работающих в оптимальном режиме, всегда имеют цвет «кофе с молоком», говорящий о правильной работе двигателя. Стоит отметить, что прогрев свечей до температуры самоочищения занимает достаточно много времени и происходит лишь примерно после 10 км пробега автомобиля, в особенности по скоростной трассе, когда тепловыделение велико. При поездках на более короткие расстояния, а также работе двигателя исключительно на малых и средних оборотах, самоочищения свечей не происходит и они покрываются нагаром, требуя периодической очистки (механической или пескоструйной).

Степень нагрева элементов свечей зависит от следующих основных факторов:

  • Внутренние факторы:
    • конструкция электродов и изолятора (длинный электрод и изолятор нагреваются быстрее);
    • материал электродов и изолятора;
    • толщина материалов;
    • степень теплового контакта элементов свечи с корпусом;
    • наличие медного сердечника в центральном электроде.
  • Внешние факторы
    • степень сжатия и компрессии;
    • тип топлива (более высокооктановое обладает большей температурой сгорания);
    • стиль езды (на больших оборотах и нагрузках двигателя нагрев свечей больше);
    • состав смеси (на бедных нагрев выше) и угол опережения зажигания.

«Горячие» свечи — конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Так как в этих случаях меньше температура в камере сгорания.

«Холодные» свечи — конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива, а также в двигателях с воздушным охлаждением, отличающихся повышенной тепловой напряжённостью камеры сгорания.

«Средние» свечи — занимают промежуточное положение между горячими и холодными (самые распространенные)

Текст

О П И С А Н И Е 721554ИЗОБРЕТЕН ИяК АВТОРСКОМУ СВИДЕТЕЛЬСТВУ Сотоз СоветскмкСоцмалмстическнзРеспублик/25 присоединением заявки М всудюрстввнньй канате СССР а делам кзобрвтеи к юткрытнк.80. Бюллетен Яата опубликования описания 18,03,8 2) Авторы изобретен И. А. Трегу и В П фомин есоюзный научноприрод ных едовательский инсти(54) КАМЕРА СГОРАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ С фОРКАМЕРНО-фАКЕЛЬНЪМ ЗАЖИГАНИЕ Изобрете ние роению, в ча ннего сгоран нос итс гател тности к двигателям внуя с форкамерно-факель, устанавливаемым настанциях для электроснабм зажигани ссорныхпоследни. аниякамер состоянной вы сгорамногозаходИзвестен двигатель внутреннсгорания, в котором камера сгопредставляет собой разделеннуюсгорания дизельного двигателя,щую из форкамеры с установленей форсункой и основной камерния, соединенных каналом сной винтовой нарезкой 1 Однако такое устройство специфично для дизеля и не может быть использовано в газовом двигателе, так как турбулентные потоки не обеспечивают сепарацию тяжелых частиц из зоны расположе ния электродов свечи зажигания, в результате чего не обеспечивается надежность пуска двигателя. Целью изобретения является оптимизация параметров рабочего процесса и повьпнение надежности запуска двигателя.Для достижения поставленной цели в многозахватной винтовой нарезке предлагаемого устройства глубина. нарезки составляет 0,10 — 0,15 диаметра канала, длина канала равна 1,5-2,0 его диаметра, а обьем форкамеры составляет 0,03- 0,05 суммарного обьема камер.На фиг, 1 представлено предлагаемое устройство, разрез по.форкамере; на фиг, 2 — расположение нарезки в канале.форкамера 1 с встроенной свечой зажигания 2 и автоматическим клапаном 3 подачи запального топлива соединена каналом 4 с цилиндром 5 двигателя, В канале 4, соединяюшем форкамеры с цилиндром 5 двигателя, выполнена многозаходная нарезка 6. Глубина нарезки 6 составляет 0,10-0,15 диаметра канала 4, длина канала 4 равна 1,5-2,0 его диаметра, а обьем форкамеры 1 составляет О, 03-0,05 суммарного объема камер,каз 96(2 Подписно 3 7215Двигатель внутреннего сгорания с форкамер на-факельным зажиганием работает следующим образом.При продувке цилиндра двигателя форкамера 1 очищается от продуктов сгора нияпредыдущего цикла и заполняется топливным газом (богатой топливо-воздушной смесью) через встроенный клапан 3. При сжатии топливо-воздушной смеси в цилиндре 5 двигателя, часть объедненО ной смеси перетекает в форкамеру 1 по каналу 4, увлекая за собой частицы мас. ла, Многозаходной винтовой нарезкой 6 в канале 4 форкамеры 1 поток воздуха завихряется и, перемешавшись с топливным газом, образует однородную легко воспламеняемую от электрической искры смесь. Частицы масла частично задерживаются на резьбе или под действием центробежных сил отбрасываются на внут 2 С реиние стенки форквмеры 1, не попадая на электроды свечи зажигания 2.В конце такта сжатия происходит разряд на свече 2, смесь в форкамере 1 25 восплвменяется,и в цилиндр 5 двигателя выбрасывается горящий турболизироввнный факел, обеспечивая более полное сгорание топлива в цилиндре двигателя, После рабочего хода и выхлопа цикл повторяется. 0 54 .1Применение двигателя внутреннего сгорания на компрессорной станции магистрального газопровода сократит перерывы в электроснабжении компрессорной станции за счет повышения надежности запуска резервных генераторов

Формула изобретения Камера сгорания двигателя внутреннего сгорания с форкамерно-факельным зажиганием, преимущественно газового совстречно-движущимися поршнями, содержащая форкамеру со свечой зажигания игазовпускным клапаном, соединенную сосновной камерой каналом, снабженныммногозвходной винтовой нарезкой, о т -л и ч а ю щ а я с я тем, что, с цельюоптимизации параметров рабочего процесса и повышения надежности пускадви гателя, глубина нарезки составляет0,10 — 0,15 диаметра канала, длина канала равна 1 5-2,0 его диаметра, аобъем форкамеры составляет 0,03-0,05суммарного объема камер,Источники информации,принятые во внимание при. экспертизе1

Патент США М 2305791,кл, 123-33, опублик. 1942,Филиал ППП «Патентф,г. Ужгород, ул. Проектная,

Смотреть

Двигатели ЗМЗ-24Д/2401 и ЗМЗ-402/4021 автомобилей «Волга» основные различия и характеристики

Сначала разберемся какие автомобили какими двигателями комплектовались с завода С 1970 по 1986 год: Автомобиль Волга ГАЗ-24 комплектовался двигателем ЗМЗ-24Д — степень сжатия 8,2, мощность 95 л.с. Автомобиль Волга ГАЗ-24-01 комплектовался двигателем ЗМЗ-2401 — степень сжатия 6,7, мощность 85 л.с. С 1986 года по 1992-й год: Автомобиль Волга ГАЗ-24-10 комплектовался двигателем ЗМЗ-402.10 — степень сжатия 8,2, мощность 100 л.с. Автомобиль Волга ГАЗ-24-11 комплектовался двигателем ЗМЗ-4021.10 — степень сжатия 6,7, мощность 90 л.с. С 1992 года и до конца выпуска карбюраторных Волг автомобили комплектовались двигателями ЗМЗ-402.10 и 4021.10. без сколь либо значимых изменений в конструкции. Основными характеристики и конструктивные отличия двигателей ЗМЗ-24Д, ЗМЗ-2401, ЗМЗ-402.10, змз-4021.10:

ЗМЗ-24Д ЗМЗ-2401 ЗМЗ-402.10 ЗМЗ-4021.10
Рабочий объем, куб.см. 2445 2445 2445 2445
Максимальная мощность при 4500 об/мин 95 85 100 90
Степень сжатия 8,2 6,7 8,2 6,7
Максимальный крутящий момент при 2400 об/мин, Н*м 186,3 171,6 182 172
Топливо АИ-93 А-76 АИ-93 А-76
Удельный расход топлива г/кВт,ч(г/л.с.ч) 306(225) 312(230) 292,4(215) 299,2(220)
Диаметр цилиндра и ход поршня,мм 92х92 92х92 92х92 92х92
Размещение водяного насоса ГБЦ ГБЦ блок цилиндров блок цилиндров
Диаметр выпускных клапанов, мм 36 36 39 39
Диаметр впускных клапанов, мм 47 47 47 47
Водораспре-делительная трубка в ГБЦ есть есть нет нет
Штатный карбюратор К-126Г К-126Г К-151 К-151
Порядок работы цилиндров 1-2-4-3 1-2-4-3 1-2-4-3 1-2-4-3
Двойные пружины клапанов нет нет да да
Количество стоек оси коромысел 4 4 6 6

Исходя из таблицы и заводских отчетов мы видим, что основные отличия ЗМЗ-402 от ЗМЗ-24Д такие:

  • система охлаждения с помпой на блоке цилиндров без водораспределительной трубки с измененной циркуляцией жидкости
  • увеличенный диаметр выпускных клапанов
  • установлены двойные пружины клапанов (выше надежность)
  • установлены две дополнительные стойки для краев оси коромысел
  • штатный карбюратор заменен с К-126Г на К-151 (и модификации в т.ч. К-151-С)
  • шпильки крепления ГБЦ увеличенного диаметра и иной резьбы (вместо М11х1 на М12х1.25)
  • увеличена масса шкива-демпфера коленчатого вала
  • изменен профиль кулачков распределительного вала
  • распределительный вал стал чугунным вместо стального
  • масляный насос с алюминиевым маслозаборником вместо стального и с увеличенной производительностью
  • изменена конструкция масляного радиатора

p.s. Характеристики двигателей приведены из заводских руководств по эксплуатации автомобилей ГАЗ-24 и ГАЗ-24-10 соответственно. Следует учитывать, что по нынешним методам измерения мощности и крутящего момента моторы показывают более скромные показатели нежели заявлено (в среднем на 5 л.с. и 5Нм меньше). В любом случае разница между ЗМЗ-24Д и ЗМЗ-402 четко прослеживается по таблице. Мы видим, что старик ЗМЗ-24Д имеет несколько более тяговую характеристику нежели ЗМЗ-402. Это обусловлено вышеописанными изменения в конструкции.

Некоторые аспекты форсировки двигателей ЗМЗ-24д и ЗМЗ-402 рассмотрены в статье: «Форсировка двигателя Волги».

Источник

VADO — Форкамерные свечи зажигания

Для промышленных газовых двигателей

Предлагаем Вашему вниманию форкамерные свечи зажигания, разработанные специально для применения в газовых промышленных двигателях.

В отличие от искровых свечей зажигания, в которых источником воспламенения смеси является искровый разряд, в форкамерных свечах поджиг смеси осуществляется факелом пламени, «выстреливающим» из сопла миниатюрного двигателя, в котором газовоздушная смесь получает значительное ускорение. Сама вспышка горючей смеси происходит сначала в форкамере свечи, а затем этот сгусток пламени с силой выбрасывается в основную камеру сгорания двигателя, обеспечивая надежный поджиг всего объема смеси.

Форкамерные свечи улучшают процесс сгорания смеси, даже при низкой энергии зажигания, увеличивая тем самым КПД и улучшая параметры по выбросам вредных веществ

Форкамерные свечи используются во многих типах двигателей.

Особенности форкамерных свечей:

  • эффективный и надежный поджиг топливной смеси
  • быстрое и максимально полное сгорание топливной смеси
  • повышение КПД
  • сниженный расход газообразного топлива
  • уменьшение температуры выхлопных газов
  • оптимизированные параметры по токсичным выбросам
  • плавный ход работы двигателя

Предлагаемые нами форкамерные свечи изготавливаются в Германии в партнерстве с одним из известных и опытнейших производителей форкамерных свечей для рынка запасных частей (after sales market). Дизайн свечей, разрабатываемый в течение нескольких лет, защищен патентом и адаптирован для применения в различных двигателях.

Форкамерная свеча, 18 мм

Форкамерная свеча 14 мм с разъемом к катушке зажигания Altronic

MAN серия E28xx

Форкамерная свеча 14 мм с разъемом к катушке зажигания Altronic FM («мама»)

MAN серия E28xx

Форкамерная свеча 14 мм

Форкамерная свеча 14 мм

Liebherr с подключением системы зажигания Altronic

Обратите внимание на следующие указания производителя свечей при монтаже форкамерных свечей:

  • Форкамерные свечи требуют повышенный момент затяжки (50 Нм) в отличие от других промышленных свечей.
  • Для форкамерных свечей необходимо настроить момент зажигания
  • При монтаже данных свечей необходимо очистить резьбу свечи и гнездо свечи в головке цилиндра
  • Резьбу свечи необходимо смазать соответствующим смазочным материалом

*При замене форкамерной свечи без кабеля (№ артикула 89100) дополнительно потребуется специальный свечной ключ и кабель зажигания

Параметры форкамерной свечи для двигателя MAN

  • Длина металлического корпуса: 160 мм
  • Глубина ввинчивания: 30 мм
  • Резьба: M14 x 1.25
  • Длина резьбы: 19 мм
  • Ключ: 22,2 мм
  • Общая длина: 470 мм

Принадлежности для подключения к катушке зажигания:

Большая Энциклопедия Нефти и Газа

Форкамера имеет две дверцы: наружную — для подачи в фор-камеру радиоактивных веществ, посуды, инструмента из помещения операторской и внутреннюю — для подачи радиоактивных веществ и других предметов внутрь камеры.  

Форкамера оборудована двумя дверцами: наружной — для подачи в форкамеру радиоактивных веществ, посуды, инструментов из помещений ремонтной зоны или операторской и внутренней — для подачи радиоактивных веществ и других предметов внутрь камеры. Светильник имеет высоту 100 мм, ширину 200 мм и длину 560 мм.  

Форкамера оборудована двумя дверцами: наружной — для подачи в форкамеру радиоактивного вещества, посуды, инструмента из помещений ремонтной зоны или операторской и внутренней — для подачи радиоактивного вещества и других предметов внутрь камеры.  

Форкамерный шнековый пресс производительностью 7 т / ч ( ПФК-7.  

Форкамера 4 с наружным обогревом через газовую рубашку аналогична автоклаву непрерывного действия, в котором нагретый полидисперсный уголь в условиях непрерывного перемещения под определенным давлением, агрегируясь, превращается в монолитную пластическую массу.  

Форкамера представляет собой канал, выложенный огнеупором.  

Форкамеры были футерованы жаропрочным бетоном и охлаждались проточной водой. Приемная камера для жидкого расплава выполнялась в двух вариантах: в одном была выложена из огнеупоров, в другом имела охлаждаемый водой кессон.  

Форкамера имеет шторки, которые открываются только при подаче отжигаемых пластин.  

Форкамеры оборудованы провальными решетками. Воздух подается в печь тремя потоками. Обжиговый газ через газоход поступает в футерованный циклон возврата.  

Форкамера с металлическими качающимися шторками при изменении высоты загрузки не требует переоборудования, меняется лишь угол наклона шторок при прохождении под ними изделий.  

Форкамера проходной печи с газовыми завесами.  

Форкамера; 3 — нагревательная камер г, 4 изделие или печной конвейер.  

Форкамера служит для выравнивания и успокоения потока. В ней устанавливаются хонейкомб и детурбулизирующие сетки.  

Схема установки регулятора уровня ПРУДВ.  

Страницы:      1    2    3    4    5

www.ngpedia.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector