Двигатель миллера принцип работы
Содержание:
Цикл дизеля
Первый дизельный мотор был спроектирован и построен немецким изобретателем и инженером Рудольфом Дизелем в 1897-м году, силовой агрегат обладал большими размерами, был даже больше паровых машин тех лет. Так же как и двигатель Отто, он был четырехтактным, но отличался превосходным показателем КПД, удобством в эксплуатации, и степень сжатия у ДВС была значительно выше, чем у бензинового силового агрегата. Первый дизели конца XIX века работали на легких нефтепродуктах и растительных маслах, также была попытка в качестве топлива использовать угольную пыль. Но эксперимент провалился практически сразу:
- обеспечить подачу пыли в цилиндры было проблематично;
- обладающий абразивными свойствами уголь быстро изнашивал цилиндро-поршневую группу.
Интересно, что английский изобретатель Герберт Эйкройд Стюарт запатентовал аналогичный двигатель на два года раньше, чем Rudolf Diesel, но Дизелю удалось сконструировать модель с увеличенным давлением в цилиндрах. Модель Стюарта в теории обеспечивала 12% тепловой эффективности, тогда как по схеме Diesel коэффициент полезного действия доходил до 50%.
В 1898 году Густав Тринклер сконструировал нефтяной двигатель высокого давления, оснащенный форкамерой, именно эта модель и является прямым прототипом современных дизельных ДВС.
Цикл Аткинсона. Двигатели, работающие по Аткинсону экономичнее и мощнее традиционных.
До сих пор двигатели, работающие по циклу Аткинсона, применялись только в сочетании с электромоторами. Но времена меняются.
Клапан открыт дольше
Цикл Аткинсона отличается меньшими потерями на пульсации: пока поршень идет вверх, впускной клапан остается открытым несколько дольше. Часть воздуха выталкивается обратно в коллектор, что позволяет избавиться от разрежения, мешающего впуску воздуха в другие цилиндры. Кроме того, газы расширяются в течение более долгого времени, фактическая степень сжатия уменьшается, а геометрическая увеличивается.
Почему до сих пор Toyota, Lexus, Hyundai и Kia использовали двигатели, работающие по циклу Аткинсона, только в составе гибридной силовой установки? Ответ прост: такие моторы обладают более высоким КПД, чем работающие по циклу Отто, но крутящий момент у них ниже, особенно на низких и средних оборотах. Что и подтверждают приведенные графики.
В гибридном приводе этот недостаток с лихвой компенсируется работой электромотора, который, как известно, обеспечивает максимальный крутящий момент уже при запуске. Кроме того, увеличивают рабочий объем: на маленьком Yaris стоит двигатель объемом 1,5 л, на Auris, Prius и СТ — и вовсе 1,8 л. И вот инженеры Toyota решили поменять подход.
И три цилиндра тоже
В следующем году японцы представят первые двигатели нового семейства, работающие по циклу Аткинсона: трехцилиндровый объемом один литр и 1,3-литровый четырехцилиндровый. Новые моторы, обладая все тем же высоким КПД, способны развивать значительно больший крутящий момент. Устанавливать их будут не только на гибридные модели, ибо главная идея состоит в том, чтобы значительно сократить расход в сравнении с классическими агрегатами, работающими по циклу Отто.
Шуи Адачи, стоящий во главе проекта, пообещал, что КПД 1,3-литрового мотора составит 38%. Геометрическая степень сжатия нового двигателя равна 13,5:1, однако реальный показатель ниже, поскольку во время движения поршня к верхней мертвой точке клапана в течение некоторого времени остаются открытыми. Коэффициент полезного действия литрового трехцилиндрового мотора составит 37%, его геометрическая степень сжатия — 11,5:1.
Чтобы добиться таких результатов, инженеры Toyota заложили в конструкцию ряд оригинальных решений. Это, во-первых, вариаторы фаз газораспределения нового поколения (VVT-iE, где Е означает «электрический»), которые управляют открыванием и закрыванием впускных клапанов. Кроме того, на выходе из впускных коллекторов обеспечивается высокая турбулентность потока воздуха (ось воронки перпендикулярна оси цилиндра). А турбулентность ускоряет сгорание бензина.
В системе рециркуляции отработавших газов EGR предусмотрен газожидкостный теплообменник: возвращаемые в цилиндры отработавшие газы охлаждаются, за счет чего снижается риск детонации и ограничивается выброс N0
Особое внимание было уделено удалению остаточных отработавших газов из камеры сгорания по завершении рабочего цикла: цилиндр энергично продувается чистым воздухом, причем делается это без применения компрессора — такая же продувка реализована в турбированном двигателе Alfa Romeo 1750 TBi
Все эти новинки сочетаются с традиционными особенностями японских двигателей, работающих по циклу Аткинсона: коленчатый вал смещен относительно центральной оси цилиндров, за счет чего снижаются напряжения, возникающие в шатуне под воздействием поршня, а поверхности цилиндров, подшипников и цепи привода газораспределительного механизма подвергнуты специальной обработке, снижающей трение.
Бензин сгорает быстрее
На схеме работающего по циклу Аткинсона мотора объемом 1,8 л мы проиллюстрировали технические решения, нашедшие воплощение в конструкции нового семейства двигателей Toyota, дебют которого намечен на 2015 год. Перед инженерами стоял целый ряд задач: увеличить скорость сгорания топлива, обеспечить управление потоками отработавших газов и поступающего в цилиндры воздуха, еще больше сократить потери на трение.
Ну и напоследок простая видео-иллюстрация по принципу работы двигателя Аткинсона:
Источник
Легендарный Saab
Лучших результатов удалось достигнуть компании Saab, когда она в 2000 году выпустила пятицилиндровый мотор, который при 1,6 литрах объема выдавал порядка двухсот двадцати пяти лошадей. Это достижение и сегодня кажется невероятным.
Двигатель разделен надвое, где части соединены друг с другом шарнирным способом. Снизу расположен коленчатый вал, шатуны и поршни, а наверху – цилиндры с головками. Гидропривод способен наклонять моноблок с цилиндрами и головками, изменяя степень сжатия при включении приводного компрессора. Несмотря на всю эффективность, разработки также пришлось отложить из-за дороговизны конструкции.
Двигатели Аткинсона на автомобилях Тойота
Хотя цикл Аткинсона не нашел свое практическое применение в 19-м веке, идея его двигателя реализована в силовых агрегатах 21-го столетия. Такие моторы устанавливаются на некоторые модели гибридных легковых автомобилей Тойота, работающих одновременно и на бензиновом топливе, и на электричестве. Нужно уточнить, что в чистом виде теория Atkinson так и не используется, скорее, новые разработки инженеров Toyota можно называть ДВС, сконструированными по циклу Аткинсона/ Миллера, так как в них используется стандартный кривошипно-шатунный механизм. Уменьшение цикла сжатия достигается за счет изменения газораспределительных фаз, при этом цикл рабочего хода удлиняется. Моторы с использованием подобной схемы встречаются на авто компании Toyota:
- Prius;
- Yaris;
- Auris;
- Highlander;
- Lexus GS 450h;
- Lexus CT 200h;
- Lexus HS 250h;
- Vitz.
Модельный ряд моторов с реализованной схемой Atkinson/ Miller постоянно пополняется, так в начале 2021 года японский концерн приступил к выпуску 1,5-литрового четырехцилиндрового ДВС, работающего на высокооктановом бензине, обеспечивающего 111 лошадиных сил мощности, со степенью сжатия в цилиндрах 13,5:1. Двигатель оснащен фазовращателем VVT-IE, способным переключать режимы Otto/ Atkinson в зависимости от скорости и нагрузки, с этим силовым агрегатом автомобиль может ускоряться до 100 км/ч за 11 секунд. Движок отличается экономичностью, высоким КПД (до 38,5%), обеспечивает отличный разгон.
Процессы
Система определяется как масса воздуха, который втягивается из атмосферы в цилиндр, сжимается поршнем, нагревается искровым зажиганием добавленного топлива, расширяется, когда он толкает поршень, и, наконец, выходит обратно в цилиндр. Атмосфера. За массой воздуха следят по изменению его объема, давления и температуры во время различных термодинамических этапов. Поскольку поршень может перемещаться по цилиндру, объем воздуха изменяется в зависимости от его положения в цилиндре. Процессы сжатия и расширения, вызываемые движением поршня в газе, идеализируются как обратимые, то есть никакая полезная работа не теряется из-за турбулентности или трения, и во время этих двух процессов тепло не передается газу или от него. Энергия добавляется к воздуху за счет сгорания топлива. Полезная работа извлекается за счет расширения газа в баллоне. После завершения расширения в цилиндре оставшееся тепло отводится и, наконец, газ выбрасывается в окружающую среду. В процессе расширения производится полезная механическая работа, а часть этой работы используется для сжатия воздушной массы в следующем цикле. Полезная механическая работа, произведенная минусом, которая используется для процесса сжатия, — это полученная чистая работа, которую можно использовать для приведения в движение или для привода других машин. В качестве альтернативы полученная полезная работа представляет собой разницу между добавленным и удаленным теплом.
Процесс впуска 0–1 (синий оттенок)
Масса воздуха (рабочего тела) втягивается в цилиндр от 0 до 1 при атмосферном давлении (постоянное давление) через открытый впускной клапан, в то время как выпускной клапан во время этого процесса закрыт. Впускной клапан закрывается в точке 1.
Процесс 1–2 такта сжатия (B на схемах)
Поршень перемещается от конца кривошипа (НМТ, нижняя мертвая точка и максимальный объем) к концу головки блока цилиндров (ВМТ, верхняя мертвая точка и минимальный объем), поскольку рабочий газ с начальным состоянием 1 сжимается изэнтропически до точки состояния 2 через коэффициент сжатия (V1/V2). С механической точки зрения это изоэнтропическое сжатие топливовоздушной смеси в цилиндре, также известное как такт сжатия. Этот изэнтропический процесс предполагает, что механическая энергия не теряется из-за трения и тепло не передается газу или от него, следовательно, процесс обратим. Процесс сжатия требует, чтобы к рабочему газу добавлялась механическая работа. Обычно степень сжатия составляет около 9–10: 1. (V1:V2) для типового двигателя.
Процесс 2–3 фазы розжига (C на схемах)
Поршень на мгновение останавливается в ВМТ. В этот момент, который известен как фаза зажигания, топливно-воздушная смесь остается в небольшом объеме в верхней части такта сжатия. Тепло добавляется к рабочему телу за счет сгорания впрыскиваемого топлива, при этом объем по существу остается постоянным. Давление повышается, и соотношение (п3п2){ displaystyle (P_ {3} / P_ {2})} называется «степенью взрываемости».
Процесс 3–4 хода расширения (D на схемах)
Повышенное высокое давление оказывает давление на поршень и толкает его к BDC. Расширение рабочей жидкости происходит изоэнтропически и работа совершается системой на поршне. Соотношение объемов V4V3{ displaystyle V_ {4} / V_ {3}} называется «степенью изоэнтропического расширения». (Для цикла Отто такая же, как степень сжатия V1V2{ Displaystyle V_ {1} / V_ {2}}). С механической точки зрения это расширение горячей газовой смеси в цилиндре, известное как рабочий ход (рабочий ход).
Процесс 4–1 идеализированного отвода тепла (А на схемах)
Поршень на мгновение находится в состоянии покоя. BDC. Давление рабочего газа мгновенно падает от точки 4 до точки 1 во время процесса постоянного объема, поскольку тепло отводится к идеализированному внешнему поглотителю, который контактирует с головкой блока цилиндров. В современных двигателях внутреннего сгорания радиатором может быть окружающий воздух (для двигателей малой мощности) или циркулирующая жидкость, например хладагент. Газ вернулся в состояние 1.
Процесс 1–0 такта выпуска
Выпускной клапан открывается в точке 1. По мере того, как поршень перемещается из «НМТ» (точка 1) в «ВМТ» (точка 0) при открытом выпускном клапане, газовая смесь сбрасывается в атмосферу, и процесс начинается заново.
КПД двигателей Отто
Первый двигатель для автомобиля, который мог нормально работать не только теоретически, был разработан французом Э. Ленуаром в далеком 1860 году, являлся первой моделью с кривошипно-шатунным механизмом. Агрегат работал на газу, использовался на лодках, его коэффициент полезного действия (КПД) не превышал 4,65%. В дальнейшем Ленуар объединился с Николаусом Отто, в сотрудничестве с немецким конструктором в 1863-м году был создан 2-тактный ДВС с КПД 15%.
Принцип четырехтактного двигателя впервые был предложен Н. А. Отто в 1876 году, именно этот конструктор-самоучка считается создателем первого мотора для автомобиля. Движок имел газовую систему питания, изобретателем же 1-го в мире карбюраторного ДВС на бензине считается российский конструктор О. С. Костович.
Работа цикла Отто применяется на многих современных двигателях, всего здесь четыре такта:
- впуск (при открытии впускного клапана цилиндрическое пространство наполняется топливной смесью);
- сжатие (клапана герметичны (закрыты), происходит сжимание смеси, в конце этого процесса – воспламенение, которое обеспечивает свеча зажигания);
- рабочий ход (из-за высоких температур и большого давления поршень устремляется вниз, заставляет двигаться шатун и коленвал);
- выпуск (в начале этого такта открывается выпускной клапан, освобождая путь выпускным газам, коленвал в результате преобразования теплоэнергии в механическую энергию продолжает вращаться, поднимая шатун с поршнем вверх).
Все такты зациклены и идут по кругу, а маховик, который запасает энергию, способствует раскручиванию коленчатого вала.
Хотя по сравнению с двухтактным вариантом четырехтактная схема кажется более совершенной, КПД бензинового мотора даже в самом лучшем случае не превышает 25%, а наибольший коэффициент полезного действия – у дизелей, здесь он может повыситься максимально и до 50%.
Какая подвеска и управляемость «гибрида»
Подвеска в «Приусе» классическая для бюджетного сегмента. Впереди — «МакФерсон», сзади — торсионная балка. Поэтому отличной управляемости от машины ждать не стоит. Подвеска в меру мягкая, немного валкая при манёврах и жесткая на неровностях. Из-за низкого клиренса — 145 мм авто не любит грунтовых дорог и больше подходит для неспешной городской езды.
Ходовая часть ремонтопригодна. В ней нет сложных узлов. Проблем с наличием запчастей тоже нет. Их стоимость не больше, чем у других моделей в бюджетной ценовой категории. Например, стойка «МакФерсон» в сборе стоит не больше 2500 рублей за контрактную деталь. А новый амортизатор обойдётся не дороже 5000 рублей.
Цикл МИЛЛЕРА
Ральф Миллер также решил поиграться со степенью сжатия, в 1947 году. То есть он как бы продолжит работу АТКИНСОНА, но взял не его сложный двигатель (с рычагами), а обычный ДВС ОТТО.
Что он предложил. Он не стал делать такт сжатия механически более коротким, чем такт рабочего хода (как предлагал Аткинсон, у него поршень движется быстрее вверх, чем вниз). Он придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршней вверх и вниз одинаковым (классический мотор ОТТО).
Можно было пойти двумя способами:
- Закрывать впускные клапана раньше окончания такта впуска – такой принцип получил название «Укороченный впуск»
- Либо закрывать впускные клапана позже такта впуска – этот вариант получил названия «Укороченного сжатия»
В конечном итоге, оба принципа дают одно и тоже – уменьшение степени сжатия, рабочей смеси относительно геометрической! Однако сохраняется степень расширения, то есть такт рабочего хода сохраняется (как в ДВС ОТТО), а такт сжатия как бы сокращается (как в ДВС Аткинсона).
Простыми словами — воздушно-топливная смесь у МИЛЛЕРА сжимается намного меньше, чем должна была сжиматься в таком же моторе у ОТТО. Это позволяет увеличить геометрическую степень сжатия, и соответственно физическую степень расширения. Намного большую, чем обусловлено детонационными свойствами топлива (то есть бензин нельзя сжимать бесконечно, начнется детонация)! Таким образом, когда топливо воспламеняется в ВМТ (верней мертвой точке), оно имеет намного большую степень расширения чем у конструкции ОТТО. Это дает намного больше использовать энергию расширяющихся в цилиндре газов, что и повышает тепловую эффективность конструкции, что влечет высокую экономию, эластичность и т.д.
Стоит также учитывать, что на такте сжатия уменьшаются насосные потери, то есть сжимать топливо у МИЛЛЕРА легче, требуется меньше энергии.
Отрицательные стороны – это уменьшение пиковой выходной мощности (особенно на высоких оборотах) из-за худшего наполнения цилиндров. Чтобы снять такую же мощность как у ОТТО (при высоких оборотах), мотор нужно было строить больше (объемнее цилиндры) и массивнее.
На современных моторах
История изобретения
Джеймс Аткинсон критически пересмотрев классическую концепцию двигателя, работающего по циклу Отто, понял, что её можно серьёзно улучшить. Так, например, у двигателя Отто на малых и средних оборотах при частично открытой дроссельной заслонке через разрежениe во впускном коллекторе поршни работают в режиме насоса, на что тратится мощность двигателя. При этом усложняется наполнениe камеры сгорания свежим зарядом топливо-воздушной смеси. Кроме этого, часть энергии теряется в выпускной системе, поскольку отработанные газы, покидающие цилиндры двигателя, всё ещё находятся под высоким давлением.
По концепции Аткинсона, впускной клапан закрывается не тогда, когда поршень находится у нижней мертвой точки, а значительно позже. Цикл Аткинсона дает ряд преимуществ.
Во-первых, снижаются насосные потери, так как часть смеси при движении поршня вверх выталкивается во впускной коллектор, уменьшая в нем разрежение.
Во-вторых, меняется степень сжатия. Теоретически онa остается постоянной, так как ход поршня и объем камеры сгорания не изменяются, а фактически за счет запоздалого закрытия впускного клапана уменьшается. А это уже снижение вероятности появления детонационного сгорания топлива, и следовательно — отсутствие необходимости увеличивать обороты двигателя переключением на пониженную передачу при увеличении нагрузки.
Двигатель Аткинсона работает по так называемoмy циклу с увеличенной степенью расширения, при котором энергия отработавших газов используется в течение длительного периода. Это создает условия для более полного использования энергии отработанных газов и обеспечивает более высокую экономичность двигателя.
Основным отличием от цикла работы обычного 4-тактного двигателя (цикла Отто) является изменение продолжительности этих тактов. В традиционном двигателе все 4 такта (впуск, сжатие, рабочий ход и выпуск) одинаковы по продолжительности. Аткинсон же сделал два первых такта короче, а два следующих длиннее и реализовал это за счёт изменения длины ходов поршней. Считается, что его модификация двигателя была продуктивнee традиционной на 10%. В то время его изобретение не нашлo широкого применения, так как имелo большое количество недостатков, основным из которых стала сложность реализации этого изобретения, а именно обеспечение движения поршней с использованием оригинального кривошипно-шатунного механизма.
Позже, в начале 1950-х годов американский инженер Ральф Миллер (англ. Ralph Miller) смог решить эту же задачу по-другому. Такт сжатия был сокращён путём внесения изменений в работу клапанов.
Обычно на такте впуска открывается впускной клапан, и до наступления такта сжатия он уже закрыт. Но в цикле Миллера впускной клапан продолжает находиться в открытом состоянии некоторую часть такта сжатия. Таким образом, часть смеси удаляется из камеры сгорания, само сжатие начинается позже и соответственно его степень оказывается ниже. По сравнению с тактом сжатия, такт рабочего хода и выпуска оказываются продолжительными. Именно от них и зависит КПД двигателя. Рабочий ход создает силу для движения, а длительный выпуск лучше сохраняет энергию выхлопных газов.
Второй такт условно разделён на две части. Такую схему иногда называют пятитактным двигателем. В первой части впускной клапан открыт и происходит вытеснение смеси, далее он закрывается, и только тогда происходит сжатие.
На гибридных автомобилях возможно применение двигателя Аткинсона, так как в них двигатель работает в малом диапазоне частот вращения и нагрузок. Однако на современных автомобилях, таких как Toyota Prius, применяют не двигатель Аткинсона, а его упрощённый аналог, построенный по принципу цикла Миллера. Следует заметить, что номинальная степень сжатия 13:1 данных двигателей не соответствует фактической, т.к. сжатие начинается не сразу в начале хода поршня вверх, а с запозданием, воздушно-топливная смесь некоторое время выталкивается обратно. Поэтому реальная степень сжатия аналогична классическим ДВС цикла Отто. При этом рабочий ход движения поршня вниз становится длиннее обычного, тем самым используя энергию расширяющихся газов с большей эффективностью, что увеличивает КПД и снижает расход топлива. Гибридный автомобиль разгоняется электромотором, который выдаёт полную мощность в широком диапазоне оборотов.
Toyota PriusБензиновый двигатель работает по циклу Аткинсона со сжатием 13:1 на бензине (АИ-95).Время закрытия впускного клапана, обороты и нагрузку на двигатель контролирует бортовой компьютер.
Мощность
Энергия, производимая циклом Отто, — это энергия, вырабатываемая в единицу времени. Двигатели Отто называются четырехтактными. Такт впуска и такт сжатия требуют одного оборота коленчатого вала двигателя. Рабочий ход и такт выпуска требуют еще одного поворота. На два оборота приходится один рабочий ход.
Из приведенного выше анализа цикла чистая работа, произведенная системой:
- ∑ Работа=W1−2+W3−4=(U2−U1)+(U4−U3)=+4−5=−1{ displaystyle sum { text {Work}} = W_ {1-2} + W_ {3-4} = left (U_ {2} -U_ {1} right) + left (U_ {4} -U_ {3} right) = + 4-5 = -1}
(опять же, используя соглашение о знаках, знак минус означает, что энергия покидает систему в качестве работы)
Если бы используемые единицы были MKS, цикл произвел бы один джоуль энергии в форме работы. Для двигателя определенного рабочего объема, например одного литра, масса газа в системе может быть рассчитана, если двигатель работает при стандартной температуре (20 ° C) и давлении (1 атм). Согласно универсальному закону газа, масса одного литра газа находится при комнатной температуре и давлении на уровне моря:
- M=пVрТ{ displaystyle M = { frac {PV} {RT}}}
- V= 0,001 м3, р= 0,286 кДж / (кг · К), Т= 293 К, п= 101,3 кН / м2
- M= 0,00121 кг
При частоте вращения двигателя 3000 об / мин происходит 1500 рабочих ходов в минуту или 25 рабочих ходов в секунду.
- ∑ Работа=1J(кг⋅Инсульт)×0.00121кг=0.00121JИнсульт{ displaystyle sum { text {Work}} = 1 , { text {J}} / ({ text {kg}} cdot { text {stroke}}) times 0.00121 , { text {kg}} = 0,00121 , { text {J}} / { text {stroke}}}
Мощность в 25 раз больше, так как 25 рабочих ходов в секунду
- п=25×0.00121=0.0303Jsили жеW{ displaystyle P = 25 times 0,00121 = 0,0303 , { text {J}} / { text {s}} ; { text {или}} ; { text {W}}}
Если двигатель многоцилиндровый, результат умножается на этот коэффициент. Если каждый цилиндр имеет разный литражный объем, результаты также умножаются на этот коэффициент. Эти результаты являются произведением значений внутренней энергии, которые были приняты для четырех состояний системы в конце каждого из четырех тактов (два вращения). Они были выбраны только для иллюстрации и, очевидно, имеют низкую ценность. Замена фактических значений из реального двигателя приведет к результатам, близким к результатам двигателя. Чьи результаты были бы выше, чем у реального двигателя, так как в анализе сделано много упрощающих предположений, которые не учитывают неэффективность. Такие результаты привели бы к завышению выходной мощности.