Технологии получения изделий из карбона

Основные плюсы и минусы

Спиннинг, для производства которого применен карбон, обладает всеми основными качественными характеристиками этого материала.

Так, положительными чертами таких бланков, считаются:

  1. Легкость. Эти удилища являются самыми легкими по сравнению с удилищами, изготовленными из стекловолокна и композитных материалов.
  2. Высокая чувствительность. С таким спиннингом, особенно быстрого строя, вы будете чувствовать малейшее изменение в поведении приманки и, как следствие – определите самую осторожную поклевку.
  3. Большая упругость и наилучшая сбалансированность такого спиннинга позволит выполнить дальний заброс приманки, а также выдержать сопротивление достойного трофея.

Однако, наряду с очевидными достоинствами, такие спиннинги имеют и несколько недостатков:

  1. Хрупкость. Бланки из высокомодульного углепластика очень слабо выдерживают удары и нагрузки на излом. Это их главный недостаток.
  2. Высокая цена. Себестоимость карбоновых спиннингов несколько снизилась в последние годы, но все еще остается достаточно высокой.
  3. Необходимость применения специальных кофров при транспортировке таких удилищ. Это необходимо для того, чтобы уберечь их от ударов.

Учитывая все плюсы и минусы спиннингов из карбона, можно сказать, что при должном, бережном уходе, они способны проявить все свои преимущества в руках у опытного рыболова.

Следует признать, что самыми востребованными на рынке рыболовных принадлежностей, являются удилища штекерного типа. Они несколько уступают в чувствительности и сбалансированности цельным, но зато превосходят их в удобстве при транспортировке, а при сравнении с телескопами, они выигрывают почти по всем параметрам.

Телескопический карбоновый спиннинг имеет несколько недостатков, которые являются следствием его конструктивной особенности. Они состоят из нескольких, соединенных между собою, колен, которых может быть от 3 до 7 штук. Каждый соединительный узел увеличивает его массу и уменьшает чувствительность и сбалансированность. Главным преимуществом спиннингов телескопической конструкции является их компактность в собранном состоянии, что очень удобно при их транспортировке.

Однако нельзя не признать, что телескопический спиннинг, в составе которого есть карбон, гораздо легче и чувствительней телескопов, выполненных из других материалов.

Особенности

Названия углеволокно и карбон, а в ряде источников еще и углеродное волокно встречаются очень часто. Но представление о действительных характеристиках этих материалов и возможностях их использования у многих людей достаточно разное. С технической точки зрения, этот материал собран из нитей сечением не менее 5 и не более 15 мкм. Почти весь состав приходится на долю углеродных атомов — отсюда и название. Сами эти атомы сгруппированы в четкие кристаллы, которые образуют параллельные линии.

Подобное исполнение обеспечивает очень большую устойчивость к растягивающему усилию. Волокно из углерода нельзя считать совершенно новым изобретением. Первые образцы похожего материала получал и использовал еще Эдисон. Позднее, в середине ХХ века углеволокно пережило ренессанс — и с этого момента его использование неуклонно возрастает.

Технология производства

Получить углеродное волокно можно из самых разных типов полимеров. Режим обработки определяет две основные разновидности таких материалов — карбонизированный и графитизированный типы

Важное различие существует между волокном, получаемым из ПАН и из различных видов пека. Качественные волокна углерода, как высокопрочной, так и высокомодульной категории, могут иметь несходный уровень твердости и модуль упругости. Принято относить их к разным маркам

Волокна делают в формате нити либо жгута. Их образует от 1000 до 10000 непрерывных элементарных волокон. Ткани из этих волокон также можно выработать, как и жгуты (в этом случае число элементарных волокон еще больше). Исходным сырьем выступают волокна не только простых, но и жидкокристаллических пеков, а также полиакрилонитрила. Процесс получения подразумевает сначала выработку исходных волокон, а затем их прогревают в воздухе при 200 — 300 градусах.

В случае с ПАН такой процесс получил название предварительной обработки или повышения огневой стойкости

Пек после подобной процедуры получает такое важное свойство, как неплавкость. Частично волокна окисляются. Режим дальнейшего прогрева определяет, будут ли они относиться к карбонизированной или графитизированной группе. Окончание работы подразумевает придание поверхности необходимых свойств, после чего ее аппретируют либо шлихтуют

Окисление в воздушной атмосфере повышает огневую стойкость не только в результате окисления. Свой вклад вносят не только частичное дегидрирование, но и межмолекулярное сшивание и иные процессы. Дополнительно уменьшается подверженность материала плавлению и улетучивание углеродных атомов. Карбонизация (в высокотемпературной фазе) сопровождается газификацией и уходом всех посторонних атомов.

Последующая их карбонизация проводится в окружении азота при 1000 — 1500 градусах. Оптимальный уровень прогрева, по мнению ряда технологов, составляет 1200 — 1400 градусов. Высокомодульное волокно придется прогревать примерно до 2500 градусов. На предварительном этапе ПАН получает лестничную микроструктуру. За ее возникновение «отвечает» конденсация на внутри молекулярном уровне, сопровождающаяся возникновением полициклического ароматического вещества.

Чем больше возрастает температура, тем больше будет и структура циклического типа. После окончания термообработки по технологии размещение молекул либо ароматических фрагментов таково, что главные оси будут параллельны волоконной оси. Натяжение позволяет избежать падения степени ориентации. Особенности разложения ПАН при термообработке определяются концентрацией привитых мономеров. Каждый тип таких волокон определяет изначальные условия обработки.

Жидкокристаллический нефтяной пек требуется долгое время держать при температуре от 350 до 400 градусов. Такой режим приведет к конденсации полициклических молекул. Их масса повышается, и постепенно происходит слипание (с образованием сферолитов). Если нагрев не останавливается, сферолиты растут, молекулярная масса увеличивается, и итогом становится формирование неразрывной жидкокристаллической фазы. Кристаллы изредка растворимы в хинолине, но обычно как в нем, так и в пиридине они не растворяются (это зависит от нюансов технологии).

Волокна, полученные из жидкокристаллического пека с 55 — 65% жидких кристаллов, текут пластически. Прядение ведут при 350 — 400 градусах. Высокоориентированную структуру формируют первоначальным нагревом в воздушной атмосфере при 200 — 350 градусов и последующим выдерживанием в инертной среде. Волокна марки Thornel P-55 приходится прогревать до 2000 градусов, чем выше модуль упругости, тем выше должна быть температура.

Научные и инженерные работы в последнее время обращают все больше внимания на технологию с применением гидрирования. Первоначальная выработка волокон часто производится гидрированием смеси каменноугольного пека и нафталовой смолы. При этом должен присутствовать тетрагидрохинолин. Температура обработки составляет 380 — 500 градусов. Твердые примеси можно удалить за счет фильтрации и прогонки через центрифугу; после этого сгущают пеки при повышенной температуре. Для производства карбона приходится применять (в зависимости от технологии) довольно разнообразное оборудование:

  • слои, распределяющие вакуум;
  • насосы;
  • герметизирующие жгуты;
  • рабочие столы;
  • ловушки;
  • проводящие сетки;
  • вакуумные пленки;
  • препреги;
  • автоклавы.

Почему не делают массовые автомобили из углепластика

Эксперты  выделают 5 основных параметров, ограничивающих широкое использование углепластика, кроме его высокой цены:

  • Карбон тяжело ремонтировать при повреждении. Его нельзя заварить, отрихтовать, наплавить. И поврежденную деталь из карбона приходится просто менять. 
  • Карбон плохо противостоит точечным ударам, его поверхность легко царапается и желтеет под воздействием солнечных лучей.
  • В технологичности он проигрывает стали и инженерным пластикам. Опасность представляют микротрещины, снижающие прочность.

И еще не стоит забывать об экологической составляющей. Процессы утилизации автомобилей во всем мире уже отлажены, а вот композитные материалы практически не перерабатываются вторично. И повторно их использовать нельзя, что делает углепластик еще дороже.

Для того чтобы изделие из карбона служило долго, сохраняя свою эстетику, необходим точный расчет многих параметров и правильный выбор материалов – углеполотна и эпоксидной смолы.

Возможность применения его в серийном автомобилестроении очень спорна. Разве что для тюнинга, но не при изготовлении несущих элементов. Обтянутое карбоном авто смотрится роскошно. Но очень может быть, что этот суперсовременный материал так и не попадет в массовое производство, ведь альтернативные инженерные пластики с армированием не такие капризные и дорогостоящие.

Утеплитель из ЭППС

Это уникальный материал, который обладает следующими свойствами:

    • низкое водопоглощение, почти равное нулю;
    • высокая прочность;
    • не подвержен гниению;
  • низкая теплопроводность;
  • высокая морозостойкость;
  • не токсичен для человека;
  • легко монтируется;
  • долговечность;
  • небольшой вес;
  • экологичность.

Это интересно: в зависимости от состава и производителя утеплитель может быть белого, серого, синего, оранжевого и даже черного цветов.

К недостаткам утеплителя из пенополистирола можно отнести:

сильную горючесть и непереносимость прямых солнечных лучей

Это важно знать, ведь храня пенополистирол на солнце, можно полностью испортить материал, а это будет неприятно;
Хоть производители и утверждают, что пенополистирол не грызут мыши, но отзывы потребителей показывают обратное;
Ну и конечно же цена, а она достаточно высокая.. Но в чем разница между Техноплексом и Пеноплексом? Что лучше?. Но в чем разница между Техноплексом и Пеноплексом? Что лучше?

Но в чем разница между Техноплексом и Пеноплексом? Что лучше?

Лучшие штекерные удочки

К штекерным относятся поплавочные удилища, не имеющие колец, подходят такие конструкции для ловли в трудно доступных местах. Само изделие состоит из трубок и колен, соединяющихся между собой.

ВОЛЖАНКА Пикер 2.4 м до 60 гр (040-0033)

Изготавливают из композита (карбон и углеволокно), данный материал делает устройство прочным износостойким. Обладает хорошей чувствительностью, что позволяет своевременно осуществлять подсечку. Имеет три вершины, кольца, позволяющие использовать не только леску, но и плетеные шнуры, крайняя вершина обладает высокой чувствительностью в поклевке. Подойдет для рыбалки на небольших водоемах с малым течением, а также в прудах и озерах с ближним забросом.

ВОЛЖАНКА Пикер 2.4 м до 60 гр (040-0033)

Достоинства:

  • бюджетная стоимость;
  • прочность;
  • дизайн;
  • чувствительность;
  • наличие колец.

Недостатки:

не обнаружены.

Kaida IMPULSE-II 3.3/60-160 (636-330)

Модели формы Kaida пользуются хорошей популярностью среди рыбаков. Материалы, используемые при производстве, придают продукции хорошую прочность, небольшой вес

Производители уделяют особое внимание качеству товара, на бланке установлены специальные кольца с керамическими вставками, которые защищают шнур от износа, а также влияют на дальность заброса

Kaida IMPULSE-II 3.3/60-160 (636-330)

Достоинства:

  • прочность;
  • долгий срок службы;
  • стоимость;
  • имеются кольца со специальными вставками.

Недостатки:

не обнаружены.

SIWEIDA BASIC

Фирма Siweida занимается производством качественных удочек, в качестве основного материала используют композит. Такой состав позволил сделать продукцию качественной и прочной, при этом цена является вполне доступной. Бланк не так сильно подвержен механическому воздействию и выдерживает довольно большие нагрузки в отличие от большинства аналогов. Но одним из больших минусов данной модели считается ее большой вес, который следует учитывать при покупке.

SIWEIDA BASIC

Достоинства:

  • цена;
  • прочность;
  • подходит для крупной рыбы;
  • устойчив к повреждениям.

Недостатки:

вес.

Полимерные матрицы

Полимерная матрица определяет эксплуатационные и технологические свойства углепластика. Для углепластиков используют как термореактивные, так и термопластичные матрицы. Из термореактивных матриц наибольшее рас-пространение получили эпоксидные связующие: эпоксидно-анилинофенолформальдегидное марки 5-211-Б, эпоксинаволачное — УНДФ, эпоксидное модифицированное диапластом — УП-2227, на основе тетрафункциональной эпоксидной смолы связующее — ВС-2526к, на основе смеси трех эпоксидных смол связующее — ЭДТ-69Н. Применение эпоксидных матриц обеспечивает получение углепластиков с высокими прочностными характеристиками, водостойкостью и химической стойкостью, хорошей эксплуатационной надежностью и ресурсом.

Из термопластичных матриц нашли применение полиимидная СП-97, полиамидоимидная ПАИС-104 и полисульфон, обеспечивающие работоспособность углепластиков при более высоких температурах (особенно полиимидная матрица — до 200…300 °С). Основной недостаток этих матриц — трудность изготовления на их основе полуфабрикатов (пропитанных лент — препрегов) и высокие температуры их отверждения.

Длительное тепловое воздействие может вызвать неотвратимое изменение химической структуры полимеров вследствие протекания термодеструкции. При длительном воздействии переменной механической нагрузки и недостаточном теплоотводе может произойти переход от механического разрушения материала к тепловому за счет диссипации механической энергии в тепловую.

Параметр

Марка углепластика

КМУ-1

КМУ-1 лм КМУ-3 КМУ-Злп КМУ-4л КМУ-4э КМУ-9 КМУ-9т КМУ-9тр

Наполнитель

Жгут ВМН-4

Лента ЛУ-П Жгут ВМН-4 Лента ЛУ-П Лента ЛУ-П Лента Элур-П Жгут УКН- 11/500 Лента УОЛ- 300 Ткань УТ-900- 2,5

Матрица

ЭТФ

ЭТФ-М 5-211Б 5-211Б ЭНФБ ЭНФБ УНДФ- 4А УНДФ- 4АР УНДФ- 4АР

Объемное содержание волокон, %

57-63

58-63 57-63 50-55 50-55 54-59 60-62 58-62 55-59

Плотность р-КГ3, кг/м3

1,45-1,49

1,48-1,50 1,4-1,45 1,4-1,45 1,45-1,50 1,49-1,52 1,55-1,58 1,52-1,56 1,52-1.54

Прочность при растяжении, МПа: вдоль волокон поперек волокон

1020 14

780 18 110023 730 20 800 24 900 32 1500 32 1500 28 60 60

Предел прочности при сжатии, МПа:

вдоль волокон поперек волокон

400 100

580 130 700 150 530 120 750 130 900 130 1200 140 1200 160 60 58

Прочность при сдвиге вдоль волокон, МПа

30

61 40 54 70 78 85 78 52

Модуль упругости при растяжении, ГПа: вдоль ВОЛОКОН Еу поперек волокон Е-,

180

145 180 9 1479,9 140 10 120 10 140 9 1258 67 67

Модуль сдвига G]->, ГПа

3,5

4,5 5,1 5,1 6,0 6,5 6,8 5,2 8,0

Коэффициент Пуассона Мц

0,27

0,27 0,31 0,27 0,25 0,265 0,27 0,33 0,07

Тест удилища

Эта характеристика говорит о рабочих нагрузках удилища, и косвенно о его прочности. С ней тоже могут быть некоторые недопонимания, поскольку в нашем полушарии она измеряется в граммах, и определяется диапазоном грузов, эффективно забрасываемых удилищем, а вот в США и некоторых других странах тест – это мощность удилища на излом, определяемая в фунтах нагрузки. Еще больше неразберихи вносят карповые удилища , тест которых определяется своим собственным способом, который показывает под какой огрузкой кончик удилища согнется на 90 градусов, и тоже указывается в фунтах. Так или иначе, чем меньшее значение теста указано на удилище, тем на меньшие нагрузки оно рассчитано. Конечно же оно не сломается если вы перегрузите его на пару грамм, однако усталость будет накапливаться в волокнах, и со временем это приведет к поломке. Неправильно огруженные удилища хуже бросают и менее чувствительны, это справедливо почти для всех видов ловли.

Топовые производители карбоновой пленки

Пленочные материалы под карбон выпускают многие американские, европейские и азиатские производители. Надежные и износостойкие изделия встречаются и среди китайских брендов. Вот производители, выпускающие продукцию, достойную внимания автолюбителей.

V3D

Наклейки этого бренда обеспечивают покрытие 3D. Оно долговечное и имеет приятную структуру с достоверной имитацией карбона.

KPMF

Производитель на рынке автотоваров более двадцати лет. Он выпускает множество материалов разных цветов и структуры. Есть матовая и глянцевая продукция. Встречаются изделия с блестками и иными эффектами. Компания изготавливает покрытия для разных видов работ.

Авто в карбоне

Среди них есть как для оклейки кузова целиком, так и для нанесения на простые либо сложные поверхности. Цена такой карбоновой пленки на машину велика. Погонный метр стоит в районе 3500 рублей.

Hexis

Марка из Франции с более чем двадцатилетней историей. Выпускает наклейки всевозможных оттенков и с разными эффектами. Есть как матовые, так и глянцевые изделия. Они обладают декоративным эффектом и защитными свойствами.

Пленка марки Hexis

Изделия относятся к премиум-классу. Поэтому цена данной карбоновой пленки для авто достигает 100000 и более рублей за погонный метр. Но есть у этой марки и линейка относительно бюджетной продукции, которая также обладает высокими характеристиками качества.

«Оракал»

Немецкая фирма, выпускающая карбоновые матовые и глянцевые покрытия. Они отлично держатся на поверхности и долго не теряют своих качеств. Богатая цветовая гамма, доступные цены – это то, за что любят владельцы автомобилей данный бренд. Его изделия востребованы российскими владельцами машин.

TR1

Изделия этого производителя известны дешевизной и качеством. Они долговечны и обеспечивают хорошую защиту кузовных элементов от влияния внешних факторов.Считается аналогом материалов марки 3M. Наклейки легко переносят высокие и низкие температуры.

Подходят для поклейки на мелкие детали и на весь кузов авто. Удаляются, не оставляя следов и повреждений ЛКП.

MxP Max Plus

Материалы этого бренда славятся качеством и невысокой ценой. Они одни из самых дешевых на рынке. Наклейки долговечны и легко удаляются, не оставляя следов. Производитель выпускает продукцию разной фактуры. Она имеет повышенную толщину. Поэтому изделия плохо клеятся на небольшие поверхности со сложной геометрией. Страдают от механических повреждений, даже незначительных.

Применение углепластиков

Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.

В строительстве, например, углеродные ткани применяются в Системе внешнего армирования. Использование углеродной ткани и эпоксидного связующего при ремонте несущих конструкций (мостов, промышленных, складских, жилых зданий) позволяет проводить реконструкцию в сжатые сроки и со значительно меньшими трудозатратами по сравнению с традиционными способами. При этом, хотя срок ремонта снижается в разы, срок службы конструкции увеличивается также в несколько раз. Несущая способность конструкции не просто восстанавливается, но и увеличивается в несколько раз.

В авиации углеродные материалы используются для создания цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью.

В атомной промышленности углепластики используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость

Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому Система внешнего армирования также имеет обширное применение

В автомобилестроении карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз.

В гражданской аэрокосмической отрасти композиционные материалы занимают очень прочные позиции. Высокие нагрузки космических полетов ставят соответствующие требования и материалам, которые используются при производстве деталей и узлов. Углеродные волокна и материалы из них, а также из карбидов работают в условиях высоких температур и давления, при высоких вибрационных нагрузках, низких температурах космического пространства, в вакууме, в условиях радиационного воздействия, а также воздействия микрочастиц и т.п.

В судостроении высокая удельная прочность, коррозионная стойкость, низкая теплопроводность, немагнитность и высокая ударостойкость делают углепластики лучшим материалом для проектирования и создания новых материалов и конструкций из них. Возможность сочетать в одном материале высокую прочность и химическую инертность, а также вибро-, звуко- и радиопоглощение обуславливает выбор именно этого материала для изготовления конструкций различных видов гражданских судов.

Одной из наиболее значимых областей применения углеродных материалов в мировой практике является ветроэнергетика. В нашей стране эта отрасль находится, по сути, в стадии зарождения, в то время как во всем мире ветряки появляются и в незаселенных районах, и в прибрежных зонах, и на морских платформах. Легкость и непревзойденные показатели прочности на изгиб углепластиков позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью.

В железнодорожной отрасли углепластики имеют широкое применение. Легкость и прочность материала позволяет облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов: высокие показатели прочности на изгиб позволяют увеличивать длину проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания.

Композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое .

Что такое карбон?

Прежде чем переходить непосредственно к пленочному материалу, в большей мере используемому в тюнинге автомобилей, нужно рассмотреть оригинал — настоящий углепластик, или карбонопластик. Это композит — материал, изготовленный из нескольких видов сырья.

Карбон — это инновационный материал: он представляет собой полотно из углеродных нитей с добавлением эпоксидных смол и каучуковых волокон. Особенность материала — его оригинальная, узнаваемая текстура, причина — уникальное переплетение нитей. Самым популярным вариантом до сих пор остается «елочка».

Сферы применения углепластика

Сейчас карбон используется в тех отраслях, где необходимы материалы эластичные, суперпрочные, но максимально легкие. Например, углепластик стал незаменимым в авиационной и космической промышленности, при производстве протезов. Автомобилестроение — еще одна «сфера деятельности» углепластика. Поскольку материал этот дорогой, используют его только для моделей премиум-класса: из карбона изготавливают ручки АКП, вставки для руля, панелей и другие декоративные элементы.

Спорт — еще одна область применения углепластика. Карбон активно используют для отделки салонов и корпуса гоночных болидов, из него изготавливают основные детали мотоциклов, катеров, снегоходов и т. д. В этом случае основным достоинством материала является сочетание «минимальный вес и легкость». Карбон легче алюминия и стали: на 20% и 40% соответственно. Однако в прочности он не уступает ни одному сплаву.

Недостатки карбона

Его высокая цена — самый существенный минус почти безупречного материала, если говорить о автовладельцах, страстно желающих изменить вид своего «коня». По этой причине тюнинговать автомобиль дорогим карбоном позволить себе могут далеко не все, причем смысла в таких тратах многие владельцы в России попросту не видят. Основание для этих сомнений одно: это другой недостаток натурального материала.

Оригинальный карбон имеет «ахиллесову пяту»: это невозможность противостоять точечному сильному воздействию. Даже небольшой камень, вылетевший из-под колеса едущего автомобиля, способен стать причиной замены карбонопластикового элемента, который при наших «чудесных» (в большинстве регионов) дорогах превратится в очень дорогое удовольствие. Восстановлению поврежденные детали не подлежат.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector